Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy: \(27309\equiv 2\pmod 7\)
\(\Rightarrow A\equiv 2^{10}+2^{20}+2^{30}+...+2^{100}\pmod 7\)
Lại có:
\(2^3\equiv 1\pmod 7\)
\(\Rightarrow 2^{10}=(2^3)^3.2\equiv 1^3.2\equiv 2\pmod 7\)
\(\Rightarrow \left\{\begin{matrix} 2^{20}\equiv 2^2\pmod 7\\ 2^{30}\equiv 2^3\pmod 7\\ ......\\ 2^{100}\equiv 2^{10}\pmod 7\end{matrix}\right.\)
Do đó: \(A\equiv 2+2^2+..+2^{10}\pmod 7\)
\(A\equiv 2(1+2+2^2)+2^4(1+2+2^2)+2^7(1+2+2^2)+2^{10}\pmod 7\)
\(A\equiv 2.7+2^4.7+2^7.7+2^{10}\pmod 7\)
\(A\equiv 2^{10}\equiv 2\pmod 7\)
Vậy $A$ chia $7$ dư $2$
a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)
= \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)
= \(\frac{-2\sqrt{6}}{2}\)
= \(-\sqrt{6}\)
\(A=\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)
\(A^2=\left(7+2\sqrt{10}+7-2\sqrt{10}\right)+2\sqrt{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\)
\(=14+2\sqrt{49-40}=14+6=20\)
Khi đó:\(A=\sqrt{20}\)
Các câu còn lại bạn làm nốt nhé
\(1.\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{5-2.\sqrt{2}.\sqrt{5}+2}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\text{|}\sqrt{5}-\sqrt{2}\text{|}-\text{|}\sqrt{5}+\sqrt{2}\text{|}=-2\sqrt{2}\)\(2.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}=\text{|}2\sqrt{2}+\sqrt{5}\text{|}+\text{|}2\sqrt{2}-\sqrt{5}\text{|}=4\sqrt{2}\)\(3.\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{3}+\sqrt{5}\right)\text{|}\sqrt{5}-\sqrt{2}\text{|}=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
1.
a, \(\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}=2\sqrt{5}\)
b, \(\sqrt{8-2\sqrt{15}}+\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}=2\sqrt{5}\)
c, \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
Ta có: \(2730\equiv0\left(mod7\right)\Rightarrow1730^{10}\equiv0\left(mod7\right)\left(1\right)\)
\(927309\equiv5\left(mod7\right)\)
\(\Rightarrow927309^{10^2}\equiv5^{10^2}\left(mod7\right)\)
Mà \(5^6\equiv1\left(mod7\right)\)
\(\Rightarrow5^{100}=5^{96}.5^4\equiv5^4\equiv2\left(mod7\right)\)
\(\Rightarrow927309^{10^2}\equiv2\left(mod7\right)\left(2\right)\)
Ta lại có: \(27309\equiv2\left(mod7\right)\)
\(\Rightarrow27309^{10^n}\equiv2^{10^n}\left(mod7\right)\)
Mà \(2^{10^n}=2.2^{10^n-1}\equiv2\left(mod7\right)\left(3\right)\)
Từ (1), (2), (3) ta có
\(A=\left(2730^{10}+927309^{10^2}+27309^{10^3}+...+27309^{10^{10}}\right)\equiv\left(0+2+2+...+2\right)\equiv18\equiv4\left(mod7\right)\)
Vậy số dư của A cho 7 là 4
bạn ơi cho mk hỏi đoạn này là sao ak ?
2.210^n-1 đồng dư với 2(mod7)