Cho △ABC nhọn. Hai đường cao BE và CF cắt nhau tại H
Chứng minh:a) AB.AF=AE.AC
b) △AFE∼△ABC
c) BH.BE+CH.CF= BC2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng vớiΔACF
=>AB/AC=AE/AF
=>AB*AF=AC*AE
c: XétΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
a.-△AEB∼△AFC (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AE.AC\)
b. \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\)
\(\Rightarrow\)△AFE∼△ACB (c-g-c)
c. \(\widehat{FAE}+\widehat{AFH}+\widehat{AEH}+\widehat{FHE}=360^0\Rightarrow\widehat{FAE}+90^0+90^0+120^0=360^0\Rightarrow\widehat{FAE}=60^0\)
-D là trung điểm AC \(\Rightarrow FD=AD=\dfrac{AC}{2}\) \(\Rightarrow\)△AFD cân tại D mà \(\widehat{FAD}=60^0\)\(\Rightarrow\)△AFD đều.
\(\Rightarrow AF=AE=\dfrac{AC}{2}\)
\(\dfrac{S_{AFE}}{S_{ACB}}=\left(\dfrac{AF}{AC}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{ACB}=4.S_{AFE}=4.40=160\left(cm^2\right)\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
a: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét tứ giác BFHD có
góc BFH+goc BDH=180 độ
=>BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có
góc CEH+góc CDH=180 độ
=>CEHD là tứ giác nội tiếp
góc FDH=góc FBH
góc EDH=góc ACF
mà góc FBH=góc ACF
nên góc FDH=góc EDH
=>DH là phân giác của góc FDE(1)
góc EFH=góc CAD
góc DFH=góc EBC
mà góc CAD=góc EBC
nên góc EFH=góc DFH
=>FH là phân giác của góc EFD(2)
Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF
c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có
góc HBD chung
=>ΔBHD đồg dạng với ΔBCE
=>BH/BC=BD/BE
=>BH*BE=BC*BD
Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có
góc FCB chung
=>ΔCDH đồng dạng với ΔCFB
=>CD/CF=CH/CB
=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2