tìm giá trị nhỏ nhất của đa thức f(x)= x2-2x+2017
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1 vào đa thứcf[x] ta có
f[x]=x2+2x+4
f[x]=-1.2+2.[-1]+4
f[x]=-2+[-2]+4
f[x]=-4+4=0
đầu bài cho giá trị nhỏ nhất là 3 khi x=-1[mà 0 nhỏ hơn 3]
suy ra giả thiết của đầu bài đưa ra là đúng
NẾU CÂU TRẢ LỜI CỦA MÌNH SAI HAY ĐÚNG HAY GÓP Ý KIẾN VÀ BẤM NÚT DỤNG CHO MÌNH NHÉ
a) \(A=-x\left(x-2\right)+2x-8=-x^2+2x+2x-8\\ =-x^2+4x-8\\ =-\left(x^2-4x+4\right)+4-8\\ =-\left(x-2\right)^2-4\)
Vì : \(\left(x-2\right)^2\ge0\forall x\)
\(=>-\left(x-2\right)^2\le0\)
\(=>A\le-4\)
Dấu = xảy ra khi : \(\left(x-2\right)^2=0=>x=2\)
Vậy GTLN bt A là : -4 tại x = 2
Ta có: P = x 2 – 2x + 5 = x 2 – 2x + 1 + 4 = x - 1 2 + 4
Vì x - 1 2 ≥ 0 nên x - 1 2 + 4 ≥ 4
Suy ra: P = 4 là giá trị bé nhất khi x - 1 2 = 0 ⇒ x = 1
Vậy P = 4 là giá trị bé nhất của đa thức khi x = 1.
bài này muốn tìm GTNN phải sửa thành \(P=x^2-2x+5\) nhé
\(=>P=x^2-2x+1+4=\left(x-1\right)^2+4\ge\)\(4\)
dấu"=" xảy ra<=>x=1
Vậy Min P=4 khi x=1
Ta có : \(x^2\ge0\forall x\inℝ\)
\(\Rightarrow x^2\)bé nhất =0 \(\Rightarrow\)\(Q_{min=0-2=-2}\)
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(f\left(x\right)=x^2-2x+2017\)
\(\Leftrightarrow f\left(x\right)=x^2-x-x+2017\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)-\left(x-1\right)+2016\)
\(\Leftrightarrow x\left(x-1\right)-\left(x-1\right)+2016\)
\(\Leftrightarrow\left(x-1\right)^2+2016\)
Với mọi x ta có :
\(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+2016\ge2016\)
\(\Leftrightarrow f\left(x\right)\ge0\)
Dấu "=" xảy ra khi :
\(\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy ..
ta co : f(x)= x2-2x+2017=x2-2x+1+2016=(x-1)2+2016\(\ge2016\)
dau = xay ra khix=1
Vay ....