Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1 vào đa thứcf[x] ta có
f[x]=x2+2x+4
f[x]=-1.2+2.[-1]+4
f[x]=-2+[-2]+4
f[x]=-4+4=0
đầu bài cho giá trị nhỏ nhất là 3 khi x=-1[mà 0 nhỏ hơn 3]
suy ra giả thiết của đầu bài đưa ra là đúng
NẾU CÂU TRẢ LỜI CỦA MÌNH SAI HAY ĐÚNG HAY GÓP Ý KIẾN VÀ BẤM NÚT DỤNG CHO MÌNH NHÉ
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(2x^3-8x^2+9x=2x\left(x^2-4x+4,5\right)=2x\left[\left(x-2\right)^2+0,5\right]\)
\(\Rightarrow F\left(x\right)\)có nghiệm duy nhất là 0
Đa thức f(x) có 3 nghiệm
+) f(0) = 2 x 0^3 - 8 x 0^ 2 + 9 x 0
= 0 - 0 + 0
= 0
+)
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
Bài giải
Nếu đề là \(F=\frac{1}{\left|x\right|}+2017\) thì làm như sau :
* Tìm giá trị lớn nhất :
\(\Rightarrow\text{ Vì }\frac{1}{\left|x\right|}>0\text{ và F lớn nhất }\Rightarrow\text{ }\frac{1}{\left|x\right|}\text{ lớn nhất }\)
\(\Leftrightarrow\text{ }\left|x\right|\text{ bé nhất }\left(x\ne0\right)\)
\(\Rightarrow\text{ }\left|x\right|\text{ là số nguyên dương nhỏ nhất }\Rightarrow\text{ }\left|x\right|=1\text{ }\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(\Rightarrow\text{ }F=\frac{1}{\left|x\right|}+2017< 1+2017=2018\)
\(\text{Vậy }Max\text{ }F=2018\)
* Gía trị bé nhất không tìm được nha !
Bài giải
Làm nốt trường hợp còn lại bạn Rain nói nha ! Vì đề bạn ghi không rõ mới làm thế này nha ! TH2 : \(F=\frac{1}{\left|x\right|+2017}\)
* Gía trị lớn nhất
\(F=\frac{1}{\left|x\right|+2017}\text{ đạt giá trị lớn nhất khi }\left|x\right|+2017\text{ đạt GTNN }\)
Mà \(\left|x\right|\ge0\text{ }\Rightarrow\text{ }\left|x\right|+2017\ge2017\)
\(\text{ Vậy để }F\text{ lớn nhất thì }\left|x\right|+2017=2017\text{ Dấu " = " xảy ra khi }\left|x\right|=0\text{ }\Rightarrow\text{ }x=0\)
\(\text{Vậy }Max\text{ }F=\frac{1}{2017}\)
* Gía trị nhỏ nhất cũng không tìm được nha bạn !
ta có: lx-15l >= 0
suy ra 4*lx-15l >= 0
4*lx-15l+2011 >= 2011
A >= 2011
dấu "=" xảy ra khi lx-15l=0
suy ra x-15=0
x=0+15
x=15
Vậy GTNN của A=2011 khi x=15
\(A=\left|x+5\right|+2-x\\ \Rightarrow A\ge x+5+2-x\forall x\\ \Rightarrow A\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+5\right|=x+5\\ \Leftrightarrow x+5\ge0\\ \Leftrightarrow x\ge-5\)
Vậy GTNN của A = 7
\(f\left(x\right)=x^2-2x+2017\)
\(\Leftrightarrow f\left(x\right)=x^2-x-x+2017\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)-\left(x-1\right)+2016\)
\(\Leftrightarrow x\left(x-1\right)-\left(x-1\right)+2016\)
\(\Leftrightarrow\left(x-1\right)^2+2016\)
Với mọi x ta có :
\(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+2016\ge2016\)
\(\Leftrightarrow f\left(x\right)\ge0\)
Dấu "=" xảy ra khi :
\(\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy ..
ta co : f(x)= x2-2x+2017=x2-2x+1+2016=(x-1)2+2016\(\ge2016\)
dau = xay ra khix=1
Vay ....