K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

\(P=\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\)

\(\le\dfrac{a}{2a\sqrt{bc}}+\dfrac{b}{2b\sqrt{ca}}+\dfrac{c}{2c\sqrt{ab}}\)

\(=\dfrac{a\sqrt{bc}}{2abc}+\dfrac{b\sqrt{ca}}{2abc}+\dfrac{c\sqrt{ab}}{2abc}\)

\(\le\dfrac{2a^2+b^2+c^2}{8abc}+\dfrac{2b^2+a^2+c^2}{8abc}+\dfrac{2c^2+b^2+a^2}{8abc}\)

\(=\dfrac{4\left(a^2+b^2+c^2\right)}{8abc}=\dfrac{1}{2}\)

8 tháng 3 2022

Cái c là \(\dfrac{2}{\sqrt{1+c^2}}\) ạ

NV
8 tháng 3 2022

\(P=\dfrac{2-\left(1+a^2\right)}{1+a^2}+\dfrac{2-\left(1+b^2\right)}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)

\(P=2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}\right)-2\) 

Từ điều kiện \(ab+bc+ca=1\), đặt \(\left\{{}\begin{matrix}a=tanx\\b=tany\\c=tanz\end{matrix}\right.\) với \(x+y+z=\dfrac{\pi}{2}\)

Xét \(Q=\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}=\dfrac{1}{1+tan^2x}+\dfrac{1}{1+tan^2y}+\dfrac{1}{\sqrt{1+tan^2z}}\)

\(Q=cos^2x+cos^2y+cosz=1+\dfrac{1}{2}\left(cos2x+cos2y\right)+cosz\)

\(=1+cos\left(x+y\right)cos\left(x-y\right)+cosz\le1+cos\left(x+y\right)+cosz\)

\(=1+cos\left(\dfrac{\pi}{2}-z\right)+cosz=1+sinz+cosz=1+\sqrt{2}sin\left(z+\dfrac{\pi}{4}\right)\le1+\sqrt{2}\)

\(\Rightarrow P\le2\left(1+\sqrt{2}\right)-2=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\dfrac{\pi}{8}\\z=\dfrac{\pi}{4}\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\sqrt{2}-1;\sqrt{2}-1;1\right)\)

14 tháng 2 2021

Lâu rồi không lên Hoc24

Áp dụng bất đẳng thức Minkowski, Schwarz và AM - GM ta có:

\(S\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{9}{a+b+c}\right)^2}=\sqrt{\left[\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}\right]+\dfrac{81.15}{16\left(a+b+c\right)^2}}\ge\sqrt{\dfrac{9}{2}+\dfrac{135}{4}}=\sqrt{\dfrac{153}{4}}=\dfrac{3\sqrt{17}}{2}\).

undefined

Sau khi chọn đc hệ số điểm rơi là 16 thì cơ sở nào tách tiếp ra 16 số rồi áp dụng cosi nữa vậy ạ??

 

 

15 tháng 4 2023

+) Bài bất đẳng thức:

\(\dfrac{2017a-a^2}{bc}=\dfrac{\left(a+b+c\right)a-a^2}{bc}=\dfrac{ab+ca}{bc}=\dfrac{a}{c}+\dfrac{a}{b}\left(1\right)\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{2017b-b^2}{ca}=\dfrac{b}{a}+\dfrac{b}{c}\left(2\right)\\\dfrac{2017c-c^2}{ab}=\dfrac{c}{a}+\dfrac{c}{b}\left(3\right)\end{matrix}\right.\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{bc}+\dfrac{2017c-c^2}{ab}=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(\sqrt{2}\left(\sum\sqrt{\dfrac{2017-a}{a}}\right)=\sqrt{2}\left(\sum\sqrt{\dfrac{\left(a+b+c\right)-a}{a}}\right)=\sqrt{2}\left(\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}+\sqrt{\dfrac{a+b}{2}}\right)\)

Bất đẳng thức cần chứng minh tương đương với:

\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge\sqrt{2}\left(\sqrt{\dfrac{a+b}{c}}+\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}\right)\)

*Có: \(\sqrt{2.\dfrac{a+b}{c}}+\sqrt{2.\dfrac{b+c}{a}}+\sqrt{2.\dfrac{c+a}{b}}\le\dfrac{2+\dfrac{a+b}{c}}{2}+\dfrac{2+\dfrac{b+c}{a}}{2}+\dfrac{2+\dfrac{c+a}{b}}{2}=3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)

Ta chỉ cần chứng minh:

\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)

hay \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\) (cái này chị tự chứng minh nhé)

 

15 tháng 4 2023

b giỏi quá

12 tháng 5 2017

Đặt \(\dfrac{b}{c}=x\)

Ta có: \(\left\{{}\begin{matrix}ab+bc=2c^2\\2a\le c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}.x+x=2\\\dfrac{a}{c}\le\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{2-x}{x}\\\dfrac{2-x}{x}\le\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{2-x}{x}\\x\ge\dfrac{4}{3}\end{matrix}\right.\)

Ta lại có:

\(\dfrac{a}{a-b}+\dfrac{b}{b-c}+\dfrac{c}{c-a}=\dfrac{\dfrac{a}{c}}{\dfrac{a}{c}-\dfrac{b}{c}}+\dfrac{\dfrac{b}{c}}{\dfrac{b}{c}-1}+\dfrac{1}{1-\dfrac{a}{c}}\)

\(=\dfrac{\dfrac{2-x}{x}}{\dfrac{2-x}{x}-x}+\dfrac{x}{x-1}+\dfrac{1}{1-\dfrac{2-x}{x}}\)

\(=\dfrac{3x^2+8x-4}{2x^2+2x-4}\)

\(=\dfrac{27}{5}+\dfrac{39x^2+14x-88}{2x^2+2x-4}=\dfrac{27}{5}+\dfrac{\left(3x-4\right)\left(13x+22\right)}{2\left(x-1\right)\left(x+2\right)}\ge\dfrac{27}{5}\)

Vậy GTNN là \(\dfrac{27}{5}\) dấu = xảy ra khi \(x=\dfrac{4}{3}\)

12 tháng 5 2017

MAX bác !!

4 tháng 11 2017

Áp dụng BĐT B.C.S ta có

\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}\)

mặt khác do \(a+b+c\le3\Rightarrow\dfrac{9}{\left(a+b+c\right)^2}\ge1\)

\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge1\)(*)

ta lại có \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le3\)

\(\Rightarrow\dfrac{2007}{ab+bc+ac}\ge\dfrac{2007}{3}=669\)(**)

lấy (*)+(**) vế theo vế ta được

\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{2009}{ab+bc+ac}\ge669+1=670\left(dpcm\right)\)

22 tháng 4 2018

\(\Leftrightarrow y=\dfrac{\sqrt{c-2}}{c}+\dfrac{\sqrt{a-3}}{a}+\dfrac{\sqrt{b-4}}{b}\)

Ta có: \(\dfrac{\sqrt{c-2}}{c}\le\dfrac{1}{2\sqrt{2}}\Leftrightarrow\left(\sqrt{c-2}-\sqrt{2}\right)^2\ge0\) ( Luôn đúng)

Tương tự: \(\dfrac{\sqrt{a-3}}{a}\le\dfrac{1}{2\sqrt{3}};\dfrac{\sqrt{b-4}}{b}\le\dfrac{1}{4}\)

\(\Rightarrow y\le\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+\dfrac{1}{4}\) và dấu ''='' xảy ra khi c = 4; a = 6; b = 8

6 tháng 5 2022

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

6 tháng 5 2022

Mà câu này làm được rồi, giúp được câu kia không