Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{log_a\dfrac{a}{b}}+log_bb-log_ba=\dfrac{1}{1-log_ab}+1-log_ba\)
\(=\dfrac{log_ba}{log_ba-1}+1-log_ba\)
Đặt \(log_ba=x\Rightarrow x\ge2\)
\(P=f\left(x\right)=\dfrac{x}{x-1}+1-x\)
\(f'\left(x\right)=\dfrac{-1}{\left(x-1\right)^2}-1< 0\) \(\Rightarrow\) hàm nghịch biến
\(\Rightarrow P\) chỉ tồn tại max (tại \(x=2\)), ko tồn tại min
Đề sai
1. Đề bài chắc chắn không chính xác, hàm này không thể tìm được nguyên hàm
2.
Trên thực tế, do d và d' vuông góc nên thể tích sẽ được tính bằng:
\(V=\dfrac{1}{6}AB.CD.d\left(d;d'\right)\) trong đó \(d\left(d;d'\right)\) là k/c giữa 2 đường thẳng d và d' (có thể áp dụng thẳng công thức tọa độ)
Còn nguyên nhân dẫn tới công thức tính đó thì:
d có vtcp \(\left(7;5;3\right)\) còn d' có vtcp \(\left(2;-1;-3\right)\) nên d và d' vuông góc
Phương trình d dạng tham số: \(\left\{{}\begin{matrix}x=7+7t'\\y=5+5t'\\z=3t'\end{matrix}\right.\)
Gọi (P) là mp chứa d' và vuông góc d thì pt (P) có dạng:
\(7x+5y+3\left(z-2\right)=0\Leftrightarrow7x+5y+3z-6=0\)
Gọi H là giao điểm (P) và d \(\Rightarrow H\left(\dfrac{105}{83};\dfrac{75}{83};-\dfrac{204}{83}\right)\)
Số xấu dữ quá.
Tính khoảng cách từ điểm H (đã biết) đến đường thẳng d' (đã biết), gọi kết quả là \(h\) (đây thực chất là khoảng cách giữa d và d').
Vậy \(V_{ABCD}=\dfrac{1}{3}.AB.\dfrac{1}{2}.h.CD=...\)
Lời giải:
Khi \(x\neq 1\) thì hàm \(f(x)\) luôn là hàm sơ cấp xác định nên $f(x)$ liên tục tại mọi điểm \(x\neq 1\).
Do đó để hàm liên tục trên \(\mathbb{R}\Rightarrow \) chỉ cần xác định $a$ để hàm liên tục tại điểm $x=1$ là đủ.
Để $f(x)$ liên tục tại $x=1$ thì:
\(\lim_{x\to 1}f(x)=f(1)\)
\(\Leftrightarrow \lim_{x\to 1}\frac{x^3-4x^2+3}{x-1}=a+\frac{5}{2}\)
\(\Leftrightarrow \lim_{x\to 1}\frac{(x-1)(x^2-3x-3)}{x-1}=a+\frac{5}{2}\)
\(\Leftrightarrow \lim_{x\to 1}(x^2-3x-3)=a+\frac{5}{2}\)
\(\Leftrightarrow -5=a+\frac{5}{2}\Leftrightarrow a=\frac{-15}{2}\)
Đáp án B
Không mất tính tổng quát, giả sử \(x\ge y\ge z\)
\(y^2-yz+z^2=y^2+\left(z-y\right)y\le y^2\Rightarrow\dfrac{1}{y^2-yz+z^2}\ge\dfrac{1}{y^2}\)
Tương tự: \(\dfrac{1}{z^2-xz+x^2}\ge\dfrac{1}{x^2}\)
\(\Rightarrow P\ge\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{x^2-xy+y^2}+\dfrac{x^2-xy+y^2}{x^2y^2}+\dfrac{1}{xy}\)
\(P\ge2\sqrt{\dfrac{x^2-xy+y^2}{x^2y^2\left(x^2-xy+y^2\right)}}+\dfrac{1}{xy}=\dfrac{3}{xy}\ge\dfrac{12}{\left(x+y\right)^2}\ge\dfrac{12}{\left(x+y+z\right)^2}=3\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\) và hoán vị
1/ \(\overrightarrow{AI}=\left(1;1;-3\right)\)
Do (P) tiếp xúc với (S) tại A \(\Rightarrow AI\perp\left(P\right)\Rightarrow\left(P\right)\) nhận \(\overrightarrow{AI}\) là một vtpt
\(\Rightarrow\) phương trình (P):
\(1\left(x-2\right)+1\left(y-1\right)-3\left(z-2\right)=0\Leftrightarrow x+y-3z+3=0\)
2/ \(\overrightarrow{u_d}=\left(2;-1;4\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;0;0\right)\)
Gọi A là giao điểm của d và (P) có pt \(x+3=0\)
\(\Rightarrow x_A=-3\) (suy từ pt (P)); \(y_A=-3;z_A=-5\) (thay \(x_A\) vào pt d) \(\Rightarrow A\left(-3;-3;-5\right)\)
Gọi (Q) là mặt phẳng qua d và vuông góc (P) \(\Rightarrow\left(Q\right)\) chứa A và (Q) có 1 vtpt là \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{u_d};\overrightarrow{n_{\left(P\right)}}\right]=\left(0;4;1\right)\)
\(\Rightarrow\) pt (Q): \(0\left(x+3\right)+4\left(y+3\right)+1\left(z+5\right)=0\Leftrightarrow4y+z+17=0\)
Gọi \(d'\) là hình chiếu của d lên (P) \(\Rightarrow\) \(d'\)có một vecto chỉ phương là \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(0;-1;4\right)\) và \(d'\) qua A
\(\Rightarrow\) pt đường thẳng \(d':\) \(\left\{{}\begin{matrix}x=-3+0.t\\y=-3+\left(-1\right).t\\z=-5+4.t\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3-t\\z=-5+4t\end{matrix}\right.\) (1)
Đến đây thì đừng bối rối vì không thấy đáp án, vì việc viết pt tham số của đường thẳng sẽ ra các kết quả khác nhau khi ta chọn điểm khác nhau (một đường thẳng chứa vô số điểm vì thế cũng có vô số cách viết 1 pt tham số của đường thẳng)
Kiểm tra đáp án chính xác bằng cách loại trừ, đầu tiên nhìn vào vecto chỉ phương \(\left(0;-1;4\right)\) \(\Rightarrow\) loại đáp án B và C
Đáp án A họ sử dụng điểm có tọa độ \(\left(-3;-5;-3\right)\) để viết, thay thử 3 tọa độ này vào hệ (1), dòng 2 cho \(-5=-3-t\Rightarrow t=2\) ; dòng 3 cho \(-3=-5+4t\Rightarrow t=\dfrac{1}{2}\ne2\). Vậy A sai nốt, D là đáp án đúng (bạn có thể thay tạo độ \(\left(-3;-6;7\right)\) vào (1) sẽ thấy đúng)
3/ Gọi \(d\) đi qua A vuông góc \(\left(P\right)\)
Ta có \(\overrightarrow{n_{\left(P\right)}}=\left(1;3;-1\right)\Rightarrow\) chọn \(\overrightarrow{u_d}=\overrightarrow{n_{\left(P\right)}}=\left(1;3;-1\right)\) là 1vecto chỉ phương của d
\(\Rightarrow\) pt tham số d có dạng: \(\left\{{}\begin{matrix}x=2+t\\y=3+3t\\z=-t\end{matrix}\right.\) (2)
Lại giống câu trên, họ chọn 1 điểm khác để viết, nhưng câu này thì loại trừ đơn giản hơn vì chi có đáp án B là đúng vecto chỉ phương, chọn luôn ko cần suy nghĩ
Nếu ko tin, thay thử điểm \(\left(1;0;1\right)\) trong câu B vào (2)
Dòng 1 cho \(1=2+t\Rightarrow t=-1\)
Dòng 2 cho \(0=3+3t\Rightarrow t=-1\)
Dòng 3 cho \(1=-t\Rightarrow t=-1\)
3 dòng cho 3 giá trị t giống nhau, vậy điểm đó thuộc d \(\Rightarrow\) đáp án đúng
\(4^{x^2-x}+2^{x^2-x+1}=3\)
<=> \(4^{x^2-x}+2^{x^2-x}.2=3\)
đặt \(2^{x^2-x}=t\) đk: t > 0
pttt: t2 + 2t - 3 = 0
=> \(\left[{}\begin{matrix}t=1\\t=-3\left(loại\right)\end{matrix}\right.\)
t = 1 <=> \(2^{x^2-x}=1\) <=> x2-x = 0
<=> \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Cái c là \(\dfrac{2}{\sqrt{1+c^2}}\) ạ
\(P=\dfrac{2-\left(1+a^2\right)}{1+a^2}+\dfrac{2-\left(1+b^2\right)}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)
\(P=2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}\right)-2\)
Từ điều kiện \(ab+bc+ca=1\), đặt \(\left\{{}\begin{matrix}a=tanx\\b=tany\\c=tanz\end{matrix}\right.\) với \(x+y+z=\dfrac{\pi}{2}\)
Xét \(Q=\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}=\dfrac{1}{1+tan^2x}+\dfrac{1}{1+tan^2y}+\dfrac{1}{\sqrt{1+tan^2z}}\)
\(Q=cos^2x+cos^2y+cosz=1+\dfrac{1}{2}\left(cos2x+cos2y\right)+cosz\)
\(=1+cos\left(x+y\right)cos\left(x-y\right)+cosz\le1+cos\left(x+y\right)+cosz\)
\(=1+cos\left(\dfrac{\pi}{2}-z\right)+cosz=1+sinz+cosz=1+\sqrt{2}sin\left(z+\dfrac{\pi}{4}\right)\le1+\sqrt{2}\)
\(\Rightarrow P\le2\left(1+\sqrt{2}\right)-2=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\dfrac{\pi}{8}\\z=\dfrac{\pi}{4}\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\sqrt{2}-1;\sqrt{2}-1;1\right)\)