Cho hàm số y = 2x + 1 và y = 3x − 1 có đồ thị là d1 và d2. Vẽ d1, d2 trên cùng một hệ
trục tọa độ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-5=\dfrac{1}{2}x\\y=2x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=5\\y=2x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=2\cdot\dfrac{10}{3}-5=\dfrac{20}{3}-\dfrac{15}{3}=\dfrac{5}{3}\end{matrix}\right.\)
a) Tập xác định của hàm số R
Bảng giá trị
x | 0 | 1 |
y = -2x + 3 | 3 | 1 |
x | 0 | 1 |
y = x – 1 | - 1 | 0 |
b, PT hoành độ giao điểm là \(2x-1=-x+5\Leftrightarrow3x=6\Leftrightarrow x=2\Leftrightarrow y=3\)
\(\Leftrightarrow A\left(2;3\right)\)
Vậy A(2;3) là tọa độ giao điểm 2 đths
a, tự vẽ
b, Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=-x\Leftrightarrow3x=-3\Leftrightarrow x=-1\Rightarrow y=1\)
Vậy \(x=-1;y=1\)
a) Tập xác định R
Bảng giá trị:
x | 0 | -1 |
y = 2x + 3 | 3 | 1 |
x | 0 | -1 |
y = - x | 0 | 1 |
=)))))