Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Bạn tự vẽ đồ thị
b. PT hoành độ giao điểm:
$2x-3=\frac{1}{2}x$
$\Rightarrow x=2$
Khi đó: $y=\frac{1}{2}x=\frac{1}{2}.2=1$
Vậy tọa độ giao điểm của 2 đường thẳng là $(2;1)$
b: Toạ độ giao điểm của (d) và (d1) là:
\(\left\{{}\begin{matrix}\dfrac{1}{2}x+5=-\dfrac{3}{2}x+1\\y=\dfrac{1}{2}x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\y=\dfrac{1}{2}x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{1}{2}\cdot\left(-2\right)+5=5-1=4\end{matrix}\right.\)
1) Vẽ hai đồ thị ( P ) và ( d ) trên cùng một mặt phẳng tọa độ.
* y = − 1 2 x 2 Hàm số xác định với mọi x ∈ ℝ Bảng giá trị
Nhận xét: Đồ thị hs là một parabol đi qua gốc tọa độ,nhận trục tung làm trục đối xứng nằm phía dưới trục hoành,O là điểm cao nhất *y=x-4 Đồ thị hs là đường thẳng đi qua hai điểm (0;-4) và (4;0) |
|
2)Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình
−
1
2
x
2
=
x
−
4
⇔
x
2
−
2
x
−
8
=
0
Δ ' = 1 + 8 = 9 > 0 nên phương trình có 2 nghiệm phân biệt x1=2;x2=-4
x1=2 => y1=-2 ; x2=-4 => y2=-8
Vậy tọa độ giao điểm của (P) và (d) là (2;-2) và (-4;-8)
a) Đồ thị:
b) Gọi giao điểm của đồ thị của hàm số y = x - 1 với trục tung, với trục hoành lần lượt là 2 điểm B và C
Thay x = 0 vào hàm số y = x - 1 ta có:
y = 0 - 1 = - 1
⇒ B(0; -1)
Thay y = 0 vào hàm số y = x - 1 ta có:
x - 1 = 0
⇔ x = 1
⇒ C(1; 0)
c) Gọi (t): y = ax + b (a 0)
Do (t) // (d) nên a = -2
⇒ (t): y = -2x + b
Thay y = -3 vào (d') ta có:
x - 1 = -3
⇔ x = -3 + 1
⇔ x = -2
Thay x = -2; y = -3 vào (t) ta có:
-2.(-2) + b = -3
⇔ 4 + b = -3
⇔ b = -3 - 4
⇔ b = -7
Vậy (t): y = -2x - 7
b, PT hoành độ giao điểm: \(2x-5=-\dfrac{1}{2}x\Leftrightarrow x=2\Leftrightarrow y=-\dfrac{1}{2}\cdot2=-1\)
\(\Leftrightarrow A\left(2;-1\right)\)
Vậy A(2;-1) là tọa độ giao điểm 2 đths
b: Tọa độ giao điểm của (d) và (d1) là:
\(\left\{{}\begin{matrix}\dfrac{1}{2}x+5=\dfrac{-3}{2}x+1\\y=\dfrac{1}{2}x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\y=\dfrac{1}{2}x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1+5=4\end{matrix}\right.\)
\(a,-1< 0\Leftrightarrow\left(d'\right)\text{ nghịch biến trên }R\\ b,\text{PT hoành độ giao điểm: }x=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow A\left(1;1\right)\\ \text{Vậy }A\left(1;1\right)\text{ là giao 2 đths}\\ c,\text{3 đt đồng quy }\Leftrightarrow A\left(1;1\right)\in\left(d''\right)\\ \Leftrightarrow m-1+2m=1\\ \Leftrightarrow3m=2\Leftrightarrow m=\dfrac{2}{3}\)
c: Vì (d2)//(d) nên \(a=-\dfrac{1}{2}\)
Thay x=-3 và y=0 vào \(y=\dfrac{-1}{2}x+b\), ta được:
\(b+\dfrac{3}{2}=0\)
hay \(b=-\dfrac{3}{2}\)
a) Tập xác định của hàm số R
Bảng giá trị