K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)

\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)

16 tháng 7 2018

ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)

=> 2S + S = -22015 + 1

=> 3S = -22015 + 1

=> 3S - 1 = -22015

=> 1 - 3S = 22015

( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)

12 tháng 5 2022

Đặt N = 1 + 2 + 22 +...+ 22012

2N = 2 + 22 + 23 +...+ 22013

2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)

N = 22013 - 1

Thay N vào M ta được:

\(M=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)
12 tháng 5 2022

Đặt \(N=1+2+2^2+...+2^{2012}\)

\(2N=2+2^2+2^3+...+2^{2013}\)

\(2N-N=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)

\(N=2^{2013}-1\)

Thay N vào M ta được:

\(M=\dfrac{2^{2013-1}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)

24 tháng 8 2018

Ta có  2 + 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 + ... + C 2017 2017 .2 0

2 − 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 . − 1 + ... + C 2017 2017 .2 0 . − 1 2017

Trừ từng vế hai đẳng thức trên ta được:

3 2017 − 1 = 2 C 2017 1 .2 2016 + C 2017 3 .2 2014 + ... + C 2017 2017 .2 0

Vậy  M = 3 2017 − 1 2

Chọn đáp án D.

4 tháng 10 2017

Bài 1:

Ta có: \(3n+1⋮n-1\)

\(\Leftrightarrow3n-3+4⋮n-1\)

\(3n-3⋮n-1\)

nên \(4⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(4\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)(tm)

Vậy: \(n\in\left\{2;0;3;-1;5;-3\right\}\)