K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

a) \(S=7^0+7^2+7^4+...+7^{2018}\)

\(\Rightarrow7^2S=7^2\left(7^0+7^2+7^4+...+7^{2018}\right)\)

\(49S=\left(7^2+7^4+7^6+...+7^{2020}\right)\)

\(49S-S=48S=\left(7^2+7^4+7^6+...+7^{2020}\right)-\left(7^0+7^2+7^4+...+7^{2018}\right)\)

\(48S=7^{2020}-7^0=7^{2020}-1\Leftrightarrow S=\dfrac{7^{2020}-1}{48}\) vậy \(S=\dfrac{7^{2020}-1}{48}\)

17 tháng 8 2017

gúp mik phần b đi

4 tháng 12 2016

1)\(S=3+3^3+3^5+...+3^{2013}+3^{2015}\)(có 1008 nhóm)

\(S=\left(3+3^3\right)+\left(3^5+3^7\right)+\left(3^9+3^{11}\right)+...+\left(3^{2013}+3^{2015}\right)\)(có 504 nhóm)

\(S=30+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)

\(S=30+90\left(3^3+3^7+...+3^{2011}\right)⋮90\)

29 tháng 7 2016

\(S=5+5^2+5^3+5^4+...+5^{2006}\) 

\(5S=5^2+5^3+5^4+5^5+...+5^{2007}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{2007}\right)-\left(5+5^2+5^3+5^4+...+5^{2006}\right)\)

\(4S=5^{2017}-5\)

\(S=\frac{5^{2017}-5}{4}\)

\(S=5+5^2+5^3+5^4+....+5^{2006}\)

\(\Rightarrow5S=5\left(5+5^2+5^3+5^4+.....+5^{2006}\right)\)

\(\Rightarrow5S-S=\left(5^2+5^3+....+5^{2007}\right)-\left(5+5^2+5^3+....+5^{2006}\right)\)

\(\Rightarrow4S=5^{2007}-3\)

\(\Rightarrow S=\frac{5^{2007}-3}{4}\)

8 tháng 1 2017

a) 3 ko chia hết cho 9

các hạng tử còn lại thì chia hết cho 9

vậy S ko chia hết cho 9

b) có 1008 số hạng

có thể chia làm 1008:3=336(nhóm)

Chia 3 vì tổng chia hết cho 70

bạn tự làm tiếp nhé ko thì gửi tin mk giải tiếp cho

8 tháng 1 2017

a)\(3^3+3^5+...+3^{2013}+3^{2015}\) chia hết cho 9

3 không chia hết cho 9 ⇒ S không chia hết cho 9

S = 3.(1 + \(3^2\) + \(3^4\) ) + ... + \(3^{2011}\) (1 + \(3^2\) + \(3^4\) ) (Do S có 1008 số hạng)

S = 3. 91 + ... + \(3^{2011}\).91

S chia hết cho 91 nên S chia hết cho 7 (91 = 7.13)

S = 3(1 + \(3^2\)) + ... + \(3^{2013}\) (1 + \(3^2\) ) (Do S có 1008 số hạng)

S = 3. 10 + ... + \(3^{2011}\).10

S chia hết cho 10. Do (7,10) =1 nên S chia hết cho 7.10 = 70

13 tháng 5 2015

Ta có: 4n-5 chia hết cho 2n-1

Mà 2(2n-1) chia hết cho 2n-1 

    hay 4n-2 chia hết cho 2n-1

Nên 4n-5-(4n-2) chia hết cho 2n-1

  hay 4n-5-4n+2 chia hết cho 2n-1

       -3 chia hết cho 2n-1

=> 2n-1 thuộc Ư(-3)={1;-1;3;-3}

Ta có bảng:

2n-1     1       -1       3        -3

n         1        0        2       -1(loại vì n thuộc N)

Vậy n ={1;0;2}

13 tháng 5 2015

1. Đặt P là thương:
 \(P=\frac{4n-5}{2n-1}\)
\(\Leftrightarrow P=\frac{4n-2-3}{2n-1}\)
\(\Leftrightarrow P=2-\frac{3}{2n-1}\)
P thuộc Z khi và chỉ khi: 2n-1 là ước của 3.
TH1: \( 2n-1=-1\)
\(\Leftrightarrow n=0\)
TH2: \(2n-1=-3 \)
\(\Rightarrow n=-1\) (Loại do n tự nhiên)
TH3: \(2n-1=1 \)
\(\Rightarrow n=1\)
TH4: \(2n-1=3\)
\(\Rightarrow n=2\)

Vậy có ba giá trị của n tự nhiên là 0; 1; 2.

 

5 tháng 8 2018

\(a,S=1+5^2+5^4+...+5^{206}\)

\(25S=5^2+5^4+5^6+...+5^{208}\)

\(\Rightarrow25S-S=5^{208}-1\)

\(\Rightarrow S=\frac{5^{208}-1}{24}\)

9 tháng 8 2021

\(A=\dfrac{40\pi}{8\pi}=5\left(cm\right)\)

Vận tốc nhanh pha hơn li độ=> pha ban đầu của vật là: \(\varphi_d=\dfrac{5\pi}{6}-\dfrac{\pi}{2}=\dfrac{\pi}{3}\left(rad\right)\)

Góc quay được trong delta t là: \(\varphi=\omega\Delta t=8\pi.\dfrac{5}{24}=\dfrac{5}{3}\pi\left(rad\right)=\pi+\dfrac{2.\pi}{3}\left(rad\right)\)

Nghĩa là vật sẽ quay được một nửa đường tròn, rồi quay thêm 2 lần góc pi/3

Tức là đi được \(S=2A+\dfrac{A}{2}+A=\dfrac{7}{2}A=\dfrac{7}{2}.5=17,5\left(cm\right)\)

\(v_{tb}=\dfrac{s}{\Delta t}=\dfrac{17,5}{\dfrac{5}{24}}=84\left(cm/s\right)\)

Sao đề bài lại cho 74cm/s mà ko phải là 84cm/s nhỉ?

 

10 tháng 8 2021

Cảm ơn bạn đã giúp, vì là đề thầy đưa nên mình cũng không rõ

Bài 1:

a: Không

b: Có

14 tháng 2 2016

S=1620-274

=(24)20-274

=280-274=274.26-274=274.(26-1)=274.63 chia hết cho 63

=>S chia hết cho 63(đpcm)

23 tháng 10 2023

a) \(S=5+5^2+...+5^{2006}\)

\(5S=5^2+5^3+...+5^{2007}\)

\(5S-S=5^2+5^3+...+5^{2007}-5-5^2-...-5^{2006}\)

\(4S=5^{2007}-5\)

\(S=\dfrac{5^{2007}-5}{4}\)

b) Ta có:

\(S=5+5^2+...+5^{2006}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2005}+5^{2006}\right)\)

\(S=\left(5+25\right)+5^2\cdot\left(5+25\right)+...+5^{2004}\cdot\left(5+25\right)\)

\(S=30+5^2\cdot30+...+5^{2004}\cdot30\)

\(S=30\cdot\left(1+5^2+...+5^{2004}\right)\)

Vậy: S ⋮ 30