Tìm số tự nhiên a và b (a<b) biết a+ b =42 và BCNN(a,b)=72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có: a ≥ b ( a,b ∈ N )
ƯCLN ( a, b) = 16
⟹ a chia hết cho 16 ⟹ a = 16.m
⟹ b chia hết cho 16 ⟹ b = 16. n
(m, n là thương; m,n ∈ N, m ≥ n)
ƯCLN(m,n) = 1
⟹ a . b = ƯCLN.BCNN
mà a = 16. m
b = 16. n
Thay số: 16 . m . 16 . n = 16 . 240
16. m . 16. n = 3840
256. m. n = 3840
⟹ m. n = 3840 : 256 = 15
Ta có bảng sau :
m | ... | ... | ... |
n | ... | ... | ... |
a | ... | ... | ... |
b | ... | ... | ... |
⟹ Vậy (a,b) ∈ { (... , ...) ; (... , ....)}
1) 12 = 1.12 = 2.6 = 3.4 = 4.3 = 6.2 = 12.1
2) 12 = 1.12 = 2.6 = 3.4
Vậy (a; b) ∈ {(1; 12); (2; 6); (3; 4)}
3) 30 = 1.30 = 2.15 = 3.10 = 5.6 = 6.5 = 10.3 = 15.2 = 30.1
4) 30 = 30.1 = 15.2 = 10.3 = 6.5
Vậy (a; b) ∈ {(30; ); (15; 2); (10; 3); (6; 5)}
a, Ta có: 12 = 1 x 12; 2 x 6; 3 x 4
b, Ta có: 12 = 1 x 12; 2 x 6; 3x 4
Theo đề bài, ta có điều kiện: a < b
=> a ϵ {1; 2; 3}
=> b ϵ {12; 6; 4}
Vậy các cặp số (a; b) cần tìm là:
(a; b) ϵ {(1; 12); (2; 6); (3; 4)}
c, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
d, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
Theo đề bài, ta có điều kiện: a > b
=> a = 30; b = 1
=> a = 15; b = 2
=> a = 10; b = 3
=> a = 6; b = 5
Vậy ta có các cặp số (a; b) thỏa mãn đề bài là:
(a; b) ϵ {(30; 1); (15; 2); (10; 3); (6; 5}
Bài 1:
Ta có ab=ƯCLN (a,b). BCNN (a,b)
=>ƯCLN (a,b)=ab:BCNN (a,b)
=>ƯCLN (a,b)=2940:210=14
Ta có: a=14. a' và b=14.b'
Ta có: a.b=2940
Thay số vào, ta có: a.b=14.a'.14.b'=(14.14).a'.b'=2940
=>a'.b'=2940:(14.14)=15 và ƯCLN (a',b')=1
Ta có:
a' | 1 | 3 | 5 | 15 |
b' | 15 | 5 | 3 | 1 |
=>
a | 14 | 42 | 70 | 210 |
b | 210 | 70 | 42 | 14 |
Vậy các cặp số a,b cần tìm là:14 và 210;42 và 70;70 và 42;210 và 14.
2 bài còn lại làm tương tự !
Bài 1: Số A là 2000 và số B là 1000.
Bài 2: Số A là 4000 và số B là 1000.
Bài 3: Không có cặp số tự nhiên A và B thỏa mãn yêu cầu.
Bài 4: Số A là 9876 và số B là 2469.
do 72=\(2^3.3^2\)
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
do 72=2^3.3^2$2^3.3^2$
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24