Cho tam giác ABC, phân giác AD. Gọi E và F lần lượt là hình chiếu của B và C lên AD
a) Chứng minh: \(\Delta ABE\) đồng dạng với \(\Delta ACF\) ; \(\Delta BDE\) đồng dạng với \(\Delta CDF\)
b) Chứng minh: AE.DF=AF.DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + Xét 2 tam giác ABE và tam giác ACF có
Góc AEB = góc AFC ( = 90 )
Góc BAE = góc CAF
\(\Rightarrow\) tam giác ABE đồng dạng vs tam giác ACF ( g.g )
+ Xét 2 tam giác BDE và tam giác CDF có
Góc BED = góc DFC
Do BE vuông góc với AD, Cf vuông góc với AD
\(\Rightarrow\) BE // CF
\(\Rightarrow\) góc EBD = góc DCF ( 2 góc ở vị trí so le trong )
\(\Rightarrow\) tam giác BDE đồng dạng với tam giác CDF ( g.g )
b) Do tam giác ABE đồng dạng vs tam giác ACF
\(\Rightarrow\frac{EA}{FA}=\frac{BE}{CF}\) (1)
Do tam giác BDE đồng dạng với tam giác CDF
\(\Rightarrow\frac{BE}{CF}=\frac{DE}{DF}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\Rightarrow\) \(\frac{EA}{FA}=\frac{DE}{DF}\) \(\left(=\frac{BE}{CF}\right)\) \(\Leftrightarrow\) \(AE.DF=FA.DE\)
1) cm : \(\Delta BHD\infty\Delta BCE\) \(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\Rightarrow BH.BE=BC.BD\)
\(\Rightarrow BH.BE+BC.BD=BC.BD+BC.DC=BC^2\)
mà BC=2BM =>BC2=4BM2
=>\(\Rightarrow BH.BE+BC.DC=4BM^2\)
2) \(CM:\tan B=\frac{AD}{BD}\)
tan BHD =\(\frac{BD}{HD}\)
mà góc BHD= góc C
=>tan C=\(\frac{BD}{HD}\)
=> tanB.tanC=\(\frac{AD}{BD}.\frac{BD}{HD}=\frac{AD}{HD}\)
BT 1:
a/ Xét tg ABE và tg ACF có
^BAE=^CAF (AD là phân giác ^BAC)
^AEB=^AFC=90
=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)
b/ Xét tg BDE và tg CDF có
^BDE=^CDF (góc đối đỉnh)
^BED=^CFD=90
=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)
Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)
BT 2:
a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)
cm tương tự cũng có AI//KH (cùng vg với AC)
=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)
^BAC=90
=> AIHK là hcn
b/
+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)
+ Xét 2 tg vuông IAK và tg vuông HKA có
IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)
=> ^AIK=^AHK (2)
Từ (1) và (2) => ^AIK=^ACB
a: Sửa đề: tam giác ABE
Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE=góc CAF
=>ΔABE đồng dạng với ΔACF
Xét ΔBDE vuông tại E và ΔCDF vuông tại F có
góc BDE=góc CDF
=>ΔBDE đồng dạng với ΔCDF
b: AE/AF=AB/AC=BE/CF
BE/CF=BD/CD=DE/DF
=>AE/AF=DE/DF
=>AE*DF=AF*DE
a) xét tam giác ABE và tam giác ACF có:
góc BAE=góc CAF (AD là phân giác góc BAC)
góc AEB=góc AFC=90 độ
\(\Rightarrow\Delta ABE\infty\Delta ACF\left(g.g\right)\)
xét tam giác BDE và tam giác CDF có:
góc CDF= góc BDE(đối đỉnh)
góc BED= góc CFD=90 độ
\(\Rightarrow\Delta BDE\infty\Delta CDF\left(g.g\right)\)
b) ta có: AD là phân giác góc BAC nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\left(1\right)\)
\(\Delta ABE\infty\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (2)
\(\Delta BDE\infty\Delta CDF\Rightarrow\dfrac{BD}{CD}=\dfrac{DE}{DF}\left(3\right)\)
từ (1),(2),(3) \(\Rightarrow\dfrac{AE}{AF}=\dfrac{DE}{DF}\Rightarrow AE\cdot DF=DE\cdot AF\)