a,Tính Tổng S = \(1-3+3^2-3^3+3^4+...+3^{100}\)
b, Chứng minh rằng \(a^3-13a⋮6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^3-a-12a=a(a^2-1)-12a=a(a+1)(a-1)-12a (1)
ta có a(a+1)(a-1) chia hết cho 6
12 chia hết cho 6
nên (1) chia hết cho 6
suy ra a^3-13a chia hết cho 6
a. Nhân 2 vế của S với 3 rồi cộng S và 3S. Rút gọn sẽ ra kết quả
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
B1 : S = 1 + 2 + 2^2 + 2^3 + ... + 2^2008 / 1 - 2^2009
Đặt A = 1 + 2 + 2^2 + 2^3 + ... + 2^2008
2A = 2 + 2^2 + 2^3 + 2^3 + 2^4 + ... + 2^2009
2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2009 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2008 )
A = 2^2009 - 1
S = 2^2009 - 1 / 1 - 2^2009
S = -1
Ta gọi
\(A\)\(=3+3^2+3^3+3^4+....+3^{100}\)
\(3A=3\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(=3^2+3^3+3^4+3^5+....+3^{101}\)
\(3A-A\)\(=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(2A=3^2+3^3+3^4+3^5+...+3^{101}-3-3^2-3^3-3^4-....-3^{100}\)
\(=3^{101}-3\)
\(S=1+3^{101}-3\)