K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Ta gọi

\(A\)\(=3+3^2+3^3+3^4+....+3^{100}\)

\(3A=3\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(=3^2+3^3+3^4+3^5+....+3^{101}\)

\(3A-A\)\(=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(2A=3^2+3^3+3^4+3^5+...+3^{101}-3-3^2-3^3-3^4-....-3^{100}\)

\(=3^{101}-3\)

\(S=1+3^{101}-3\)

24 tháng 2 2016

a^3-a-12a=a(a^2-1)-12a=a(a+1)(a-1)-12a              (1)

ta có a(a+1)(a-1) chia hết  cho 6

12 chia hết cho 6

nên (1) chia hết cho 6

suy ra a^3-13a chia hết cho 6

24 tháng 2 2016

bai toan nay kho qua

5 tháng 4 2016

a. Nhân 2 vế của S với 3 rồi cộng S và 3S. Rút gọn sẽ ra kết quả

13 tháng 3 2016

bài 2 :338350

Bài 3:

a: a*S=a^2+a^3+...+a^2023

=>(a-1)*S=a^2023-a

=>\(S=\dfrac{a^{2023}-a}{a-1}\)

b: a*B=a^2-a^3+...-a^2023

=>(a+1)B=a-a^2023

=>\(B=\dfrac{a-a^{2023}}{a+1}\)

26 tháng 6 2018

B1 : S = 1 + 2 + 2^2 + 2^3 + ... + 2^2008 / 1 - 2^2009

Đặt A = 1 + 2 + 2^2 + 2^3 + ... + 2^2008

2A = 2 + 2^2 + 2^3 + 2^3 + 2^4 + ... + 2^2009

2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2009 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2008 )

A = 2^2009 - 1

S = 2^2009 - 1 / 1 - 2^2009

S = -1