K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

A= x2+y2-4x+2y+7

= (x2-4x+4)+(y2+2y+1)+2

= (x-2)2+(y+1)2+2

Ta thấy: (x-2)2\(\ge0\)

(y+1)2\(\ge0\)

\(\Rightarrow\)(x-2)2+(y+1)2+2\(\ge2\)

\(\Rightarrow\)A\(\ge2\)

Vậy A>0 \(\forall x,y\)

24 tháng 3 2017

\(A=x^2+y^2-4x+2y+7\)

\(=x^2+y^2-4x+2y+4+1+2\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+2\)

\(=\left(x-2\right)^2+\left(y+1\right)^2+2\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+2\ge2>0\forall x,y\)