Tìm x,biết:
\(\left(x-\frac{1}{4}\right)^2=\frac{4}{9}\)
Giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2.\left(\frac{-1}{2}\right).\left(\frac{2}{3}\right)^2-3\left(-\frac{1}{3}\right)^2.\frac{2}{9}:x=3.\left(-\frac{1}{2}\right)-\frac{2}{3}\)
\(\Leftrightarrow-\frac{4}{9}-\frac{1}{3}.\frac{2}{9}:x=-\frac{3}{2}-\frac{2}{3}\)
\(\Leftrightarrow-\frac{4}{6}-\frac{2}{27}:x=-\frac{13}{6}\)
\(\Leftrightarrow\frac{2}{27}:x=-\frac{4}{9}:\frac{-13}{6}\)
\(\Leftrightarrow\frac{2}{27}:x=\frac{31}{18}\)
\(\Leftrightarrow x=\frac{2}{27}:\frac{31}{18}\)
\(\Rightarrow x=\frac{4}{93}\)
Vậy \(x=\frac{4}{93}\)
\(\frac{3}{5}x-\frac{13}{9}:\left(\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}\right)=-10\)
<=> \(\frac{3}{5}x-\frac{13}{9}:\left(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}\right)=-10\)
<=> \(\frac{3}{5}x-\frac{13}{9}:13:\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)=-10\)
<=> \(\frac{3}{5}x-\frac{1}{9}:\left(\frac{21}{315}+\frac{9}{315}+\frac{5}{315}\right)=-10\)
<=> \(\frac{3}{5}x-\frac{1}{9}:\frac{35}{315}=-10\)
<=> \(\frac{3}{5}x-\frac{1}{9}:\frac{1}{9}=-10\)
<=> \(\frac{3}{5}x-1=-10\)
<=> \(\frac{3}{5}x=-9\)
<=> \(x=-15\)
Vậy x = -15.
\(\frac{3}{5}x-1\frac{4}{9}:\left(\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}\right)=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}=-10\right)\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left[\frac{13}{2}\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\right)\right]=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left[\frac{13}{2}\left(\frac{2}{3.5}+\frac{2}{.57}+\frac{2}{7.9}\right)\right]=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left[\frac{13}{2}\left(\frac{1}{3}-\frac{1}{9}\right)\right]=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left(\frac{13}{2}.\frac{2}{9}\right)=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\frac{26}{18}=-10\)
\(\Leftrightarrow\frac{3}{5}x-1=-10\)
\(\Leftrightarrow\frac{3}{5}x=-10+1\)
\(\Leftrightarrow\frac{3}{5}x=-9\)
\(\Rightarrow x=-9:\frac{3}{5}\)
\(\Rightarrow x=-15\)
Vậy \(x=-15\)
b. (x+1)(1/10+1/11+1/12-1/13-1/14)=0
x+1=0 (vì : 1/10+1/11+1/12-1/13-1/14>0)
x=-1
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
(x-1/16)=4/9
x=4/9+1/16
x=73/144
Mk tự lm
(x- 1/4)2 = 4/9
=> (x- 1/4)2 = (2/3)2
=> x-1/4 = 2/3
=> x = 2/3+1/4
=>x = 11/12