K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

Kẻ đường cao AD \(\Rightarrow IH\parallel AD(\bot BC)\)

mà I là trung điểm AB nên H là trung điểm BD

Ta có: \(HC^2-HB^2=\left(HC-HB\right)\left(HC+HB\right)=\left(HC-DH\right).BC\)

\(=CD.BC\)

tam giác ABC vuông tại A có đường cao AD nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CD.BC\Rightarrow\) đpcm

undefined

 

27 tháng 7 2021

bạn ơi ng ta kêu cm hc^2-hb^2=ac^2

 

4 tháng 4 2021

Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá

a, Ta có : BH = HC = BC : 2

    =>    BH = HC = 8 : 2

    =>    BH = HC = 4 ( cm )

    => BH = HC

b, - Xét tam giác AHB vuông tại H có :

          AC= AH2 + HC2

=>     52  =   AH2  +   42

=>    25  = AH2  +  16

=> AH2 = 25 + 16

=> AH2 = 41

=> AH = 20,5 ( cm )

4 tháng 5 2017

tự vẽ hình nha!^^

1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)

b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ

\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ

mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)

2/a/\(Xét\Delta ABIva\Delta HBIcó:\)

góc BAI=BHI=90 độ

BỊ chung;góc B1=góc B2

Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)

b/ vì IA=IH(do tgiac ABI=tgiac HBI)

Vậy tam giác AIH cân tại I

c/Vì AB=AH(do tam giác BIA= tam giác BIH)

\(\Rightarrow\)tam giác BAH cân tại B

mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)

\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

30 tháng 12 2022

a: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

Do đó: ΔHBD=ΔHCE

=>HD=HE

30 tháng 12 2022

a: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

Do đó: ΔHBD=ΔHCE

=>HD=HE

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở Ea.Chứng minh tam giác ABE = tam giác ADEb.AE cắt BD tại I .Chứng minh I là trung điểm của BDc.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD d.Tính số đo góc ABD2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C a.Tính số đo của góc B và C của Tam giác ABCb.Kẻ AH vuông góc với BC (...
Đọc tiếp

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở E

a.Chứng minh tam giác ABE = tam giác ADE

b.AE cắt BD tại I .Chứng minh I là trung điểm của BD

c.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD 

d.Tính số đo góc ABD

2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C 

a.Tính số đo của góc B và C của Tam giác ABC

b.Kẻ AH vuông góc với BC ( H thuộc BC) .Trên tia HC lấy D sao cho H là trung điểm của BD .Chứng minh Tam giác ABH= tam giác AHD

c.Chứng minh AD= Cd

d.TRên tia đối của HA lấy K sao cho HK= HA. Chứng minh KD là đường trung trực của AC.

3.Cho tam giác ABC có góc A= 90 độ ( AB<AC) kẻ AH vuông góc với BC ,. Trên Bc lấy I sao cho HI=HB. Trên tia đối của HA lấy K sao cho HK=HA

a.chứng minh tam giác ABH=tam giác KIH

b.Chứng minh AB song song với KI

c.Vẽ IE vuông góc với AC tại E . Chứng minh K, I,E thẳng hàng 

Giải giúp mình với các bạn . Mình cần rất gấp . Mai phải nộp rồi

Thanks nhiều nghen

1
9 tháng 5 2021

xét tam giác ABE và tam giác ADE 

AE chung 

góc BAE = góc DAE(AE la tia phân giác của góc E)

AB = AD ( gt)

=> tam giác ABE = tam giac DAE  ( c.g.c)

b) xét tam giác  ABI và tam giác ADI

AI chung 

góc BAE =  góc DAE 

tam giác  ABI=tam giác ADI

=> BI = DI ( 2 cạnh t/ứ )

=> I là trung điểm của BD

17 tháng 3 2019

A B C H M D

a, xét tam giác CMD và tam giác BMA có : AM = MD (gt)

MB = MC do M là trung điểm của BC (Gt)

góc CMD = góc AMB (đối đỉnh )

=> tam giác CMD = tam giác BMA (c - g - c)

=> góc ABM = góc DCM (định nghĩa)

b, góc ABM = góc DCM (Câu a) mà 2 góc này so le trong

=>  CD // AB (đl)

mà CA _|_ AB do tam giác ABC vuông tại A (gt)

=> CA _|_ CD (dl)

=> góc ACD = 90 (đn)

=> tam giác ACD vuông tại C (đn)

c,  xét tam giác ABC và tam giác CDA có : AC chung

góc ABC = góc CDA = 90

AB = CD do tam giác CMD = tam giác BMA (câu a)

=> tam giác ABC = tam giác CDA (2cgv)

=> AD = CB (đn)

M là trung điểm của CB =>  CM = 1/2BC 

CM = MA

 do tam giác CMD = tam giác BMA (Câu a)

=> MA = 1/2BC 

d, 

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔEHB vuông tại E(gt)

mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)

nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)