K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

28 tháng 3 2017

Kết bạn với tớ nhé

1 tháng 1 2017

 Bạn vẽ hình ra nhé! 
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau) 
Xét tam giác vuông ADM và tam giác vuông BAH có: 
AD = AB (gt) 
góc DAM = góc ABH (cmt) 
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn) 
=> DM = AH 
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH 
=> DM = EN (cùng bằng AH) 
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE. 
Chúc bạn học giỏi!

tk nha bạn

thank you bạn

(^_^)

1 tháng 1 2017

yêu bạn quá!!! cảm ơn bạn nhiều

30 tháng 3 2016

a) gọi giao điểm của đường trung trực (ứng với BC) và cạnh BC là M, gọi giao điểm của đường trung trực (ứng với AD) và cạnh AD là N

Xét 2 tam giác vuông MIB và MIC có:

MB=MC (giả thiết)

MI là cạnh chung

=> Tam giác MIB=MIC ( 2 cạnh góc vuông)

=> BI=IC (2 cạnh tương ứng)

Xét 2 tam giác vuông NIA và NID có:

NA=ND (giả thiết)

NI là cạnh chung

=> Tam giác NIA=NID (2 cạnh góc vuông)

=> IA=ID ( 2 cạnh tương ứng)

Xét 2 tam giác AIB và DIC có:

IA=ID (cmt)

IB=IC (cmt)

AB=CD ( gt)

=> Tam giác AIB = DIC (cạnh-cạnh-cạnh)

b) Ta có : góc ABI = DCI ( vì tam giác AIB=DIC)

=> 180o - ABI = 180o - DCI

=> EBA - ABI = NCD - DCI

=> góc EBI = NCI

Xét hai tam giác vuông EIB và NIC có:

IB=IC(cmt)

góc EIB=NCI ( cmt)

=> Tam giác EIB=NIC( cạnh huyền - góc nhọn)

=> IE=IN ( 2 cạnh tương ứng)

Mà I nằm trong góc EBC

=> I nằm trên tia phân giác của góc EBC

Vậy AI là tia phân giác của góc BAC

c) Ta có: EB=NC ( vì tam giác EIB=NIC)

mà AB=CD ( giả thiết)

=> AB+EB= NC+CD

=> AE=ND

mà AN = ND = 1/2AD

=> AE= AN = 1/2 AD

15 tháng 3 2018

bạn vẽ hình đi

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E  BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

31 tháng 1 2022

a)- Ta có: △ABD vuông tại A và \(AB=AD\left(gt\right)\)

=>△ABD vuông cân tại A.

- Ta có: \(\left[{}\begin{matrix}DM\perp AH\left(gt\right)\\BC\perp AH\left(gt\right)\end{matrix}\right.\)=>\(DM\)//\(BC\).

=>\(\widehat{BDM}+\widehat{DMH}=180^0\) (2 góc trong cùng phía).

=>\(\widehat{ADM}+\widehat{ADB}+\widehat{ABH}+\widehat{ABD}=180^0\).

Mà \(\widehat{ADB}=\widehat{ABD}=45^0\)(△ABD vuông cân tại A)

=>\(\widehat{ADM}+45^0+\widehat{ABH}+45^0=180^0\)

=>\(\widehat{ADM}+\widehat{ABH}+90^0=180^0\)

=>\(\widehat{ADM}+\widehat{ABH}=90^0\)

Mà \(\widehat{ADM}+\widehat{MAD}=90^0\) (△ADM vuông tại M).

=>\(\widehat{ABH}=\widehat{MAD}\).

- Xét △ADM vuông tại M và △BAH vuông tại H có:

\(AD=AB\left(gt\right)\)

\(\widehat{ABH}=\widehat{MAD}\) (cmt)

=>△ADM  = △BAH (cạnh huyền-góc nhọn).

=>\(DM=AH\) (2 cạnh tương ứng).

b) - Sửa đề: Gọi I là trung điểm của MN.

- Ta có: △ACE vuông tại A và \(AC=AE\left(gt\right)\)

=>△ACE vuông cân tại A.

- Ta có: \(\left[{}\begin{matrix}EN\perp AH\left(gt\right)\\BC\perp AH\left(gt\right)\end{matrix}\right.\)=>\(EN\)//\(BC\).

=>\(\widehat{NEC}+\widehat{HCE}=180^0\) (2 góc trong cùng phía).

=>\(\widehat{AEN}+\widehat{AEC}+\widehat{ACE}+\widehat{ACB}=180^0\).

Mà \(\widehat{AEC}=\widehat{ACE}=45^0\)(△ACE vuông cân tại A)

=>\(\widehat{AEN}+45^0+\widehat{ACB}+45^0=180^0\)

=>\(\widehat{AEN}+\widehat{ACB}+90^0=180^0\)

=>\(\widehat{AEN}+\widehat{ACB}=90^0\)

Mà \(\widehat{AEN}+\widehat{NAE}=90^0\) (△ANE vuông tại N).

=>\(\widehat{ACB}=\widehat{NAE}\).

- Xét △ANE vuông tại N và △CHA vuông tại H có:

\(AN=AC\left(gt\right)\)

\(\widehat{ACB}=\widehat{NAE}\) (cmt)

=>△ANE = △CHA (cạnh huyền-góc nhọn).

=>\(NE=AH\) (2 cạnh tương ứng) mà \(DM=AH\) (cmt)

=>\(NE=DM\).

- Xét △DMI và △ENI có:

\(\left[{}\begin{matrix}DM=NE\left(cmt\right)\\\widehat{DMI}=\widehat{ENI}=90^0\\MI=NI\left(IlàtrungđiểmMN\right)\end{matrix}\right.\)

=>△DMI = △ENI (c-g-c).

=>\(\widehat{DIM}=\widehat{EIN}\) (2 góc tương ứng).

Mà \(\widehat{DIM}+\widehat{DIN}=180^0\) (kề bù).

=>\(\widehat{EIN}+\widehat{DIN}=180^0\)

=>\(\widehat{EID}=180^0\) hay 3 điểm E,I,D thẳng hàng.

31 tháng 1 2022

- Hình vẽ:

undefined