Mn giúp em giải và giải thích từng câu với ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
49.
\(\Leftrightarrow m.sin2x+2\left(cos2x+1\right)=m+5\)
\(\Leftrightarrow m.sin2x+2cos2x=m+3\)
Pt có nghiệm khi:
\(m^2+2^2\ge\left(m+3\right)^2\)
\(\Leftrightarrow6m\le-5\Rightarrow m\le-\dfrac{5}{6}\)
\(\Rightarrow m=\left\{-3;-2;-1\right\}\)
50.
\(\Leftrightarrow m.2sin^2x+4sinx.cosx+3m.2cos^2x=2\)
\(\Leftrightarrow m\left(1-cos2x\right)+2sin2x+3m\left(1+cos2x\right)=2\)
\(\Leftrightarrow m.cos2x+sin2x=1-2m\)
Pt có nghiệm khi:
\(m^2+1\ge\left(1-2m\right)^2\Leftrightarrow3m^2-4m\le0\)
\(\Rightarrow m\in\left[0;\dfrac{4}{3}\right]\)
51.
ĐKXĐ: \(x\ne k\pi\)
\(\dfrac{5-4cosx}{sinx}=\dfrac{6tana}{1+tan^2a}\)
\(\Leftrightarrow\dfrac{5-4cosx}{sinx}=\dfrac{6sina}{cosa}.cos^2a=3sin2a\)
\(\Leftrightarrow5-4cosx=3sin2a.sinx\)
\(\Leftrightarrow3sin2a.sinx+4cosx=5\)
Pt có nghiệm khi:
\(\left(3sin2a\right)^2+4^2\ge5^2\)
\(\Leftrightarrow sin^22a\ge1\)
\(\Leftrightarrow sin^22a=1\Leftrightarrow cos2a=0\)
\(\Leftrightarrow2a=\dfrac{\pi}{2}+k\pi\Rightarrow a=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
\(\Rightarrow a=\left\{\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{5\pi}{4};\dfrac{7\pi}{4}\right\}\)
Em tự cộng và chọn kết quả nhé
13.
\(y=1+sin2x-\left(1-sin^22x\right)=sin^22x+sin2x\)
\(y=\left(sin2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\left\{{}\begin{matrix}sin^22x\le1\\sin2x\le1\end{matrix}\right.\) \(\Rightarrow y\le1+1=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=2\end{matrix}\right.\)
\(\Rightarrow4a+b=1\)
14.
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=x+\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{4}=\dfrac{\pi}{4}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
\(\Rightarrow x=\left\{\dfrac{\pi}{6};\dfrac{5\pi}{6}\right\}\)
\(\Rightarrow\dfrac{\pi}{6}+\dfrac{5\pi}{6}=\pi\)
15.
\(3cosx+2cos^2x-1-cos3x+1=cosx-cos3x\)
\(\Leftrightarrow cos^2x+cosx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm lớn nhất \(x=\dfrac{3\pi}{2}\)
\(sin\left(\dfrac{3\pi}{2}-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
16.
\(cos\left(2x+\dfrac{2\pi}{3}\right)+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow cos\left[\pi-2\left(\dfrac{\pi}{6}-x\right)\right]+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow-cos\left[2\left(\dfrac{\pi}{6}-x\right)\right]+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow1-2cos^2\left(\dfrac{\pi}{6}-x\right)+4cos\left(\dfrac{\pi}{6}-x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow1-2t^2+4t=\dfrac{5}{2}\Leftrightarrow4t^2-8t+3=0\)
17.
\(sin2x=sinx\Rightarrow\left\{{}\begin{matrix}2x=x+k2\pi\\2x=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
Nghiệm dương nhỏ nhất: \(x=\dfrac{\pi}{3}\)
18.
\(-1\le sin3x\le1\Rightarrow-1\le y\le4\)
\(miny=-1\) ; \(maxy=4\)
18 ver 1
Câu này trắc nghiệm điển hình, chỉ thay \(x=40^0\) vào 4 đáp án để thử, ko ai tự luận nó cả
19.
ĐKXĐ:
\(cos\left(2x-\dfrac{\pi}{3}\right)\ne0\)
\(\Leftrightarrow2x-\dfrac{\pi}{3}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)
27.
\(cos\left(\dfrac{x}{2}+15^0\right)=sinx\)
\(\Leftrightarrow cos\left(\dfrac{x}{2}+15^0\right)=cos\left(90^0-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}+15^0=90^0-x+k360^0\\\dfrac{x}{2}+15^0=x-90^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=50^0+k240^0\\x=210^0+k720^0\end{matrix}\right.\)
Với \(k=1\Rightarrow x=50^0+240^0=290^0\)
28.
\(sin\left(x-\dfrac{\pi}{4}\right)\ne0\)
\(\Leftrightarrow x-\dfrac{\pi}{4}\ne k\pi\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\)
29.
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\dfrac{17\pi}{12};\dfrac{23\pi}{12}\right\}\)
30.
Pt \(2sinx+3cosx=1\) có \(2^2+3^2>1^2\) nên có nghiệm
40.
\(\sqrt{3}tanx-1=0\)
\(\Leftrightarrow tanx=\dfrac{1}{\sqrt{3}}\)
\(\Rightarrow x=30^0+k180^0\)
41.
Từ đồ thị ta thấy hàm đồng biến trên \(\left(-\dfrac{\pi}{2};0\right)\) (đồ thị hàm số chỉ có xu hướng đi lên chứ không có đoạn đi xuống trên toàn miền)
42.
\(\Leftrightarrow1-cos2x-2sin2x+2\left(1+cos2x\right)=1\)
\(\Leftrightarrow cos2x-2sin2x=-2\)
43.
\(cos3x=1\Leftrightarrow4cos^3x-3cosx-1=0\)
\(\Leftrightarrow\left(cosx-1\right)\left(2cosx+1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)
\(cos2x=-\dfrac{1}{2}\Leftrightarrow2cos^2x-1=-\dfrac{1}{2}\)
\(\Leftrightarrow cos^2x=\dfrac{1}{4}\Rightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)
So sánh 2 pt trên ta thấy chúng có nghiệm chung \(cosx=-\dfrac{1}{2}\)
\(\Leftrightarrow x=\pm\dfrac{2\pi}{3}+k2\pi\)
\(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\)
Thấy : \(sinx+cosx+2\ge-1-1+2=0\) . " = " ko xảy ra nên : \(sinx+cosx+2>0\)
Suy ra : \(\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\) (*)
(*) có no \(\Leftrightarrow\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\Leftrightarrow2y^2-6y+5\ge4y^2-4y+1\Leftrightarrow-2y^2-2y+4\ge0\)
\(\Leftrightarrow-y^2-y+2\ge0\) \(\Leftrightarrow-2\le y\le1\)
Suy ra : Max y = 1 . Chọn B
21 : \(cosx-\sqrt{3}sinx=0\)
cos x = 0 thay vào : sin x = 0 ( L )
cos x khác 0 \(\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\); ta có : \(1-\sqrt{3}tanx=0\Leftrightarrow tanx=\dfrac{1}{\sqrt{3}}\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\left(k\in Z\right)\)