Cho tam giác ABC vuông tại A ( AB < AC ), đường cao AH ( H thuộc BC )
1, Chứng minh: Tam giác HBA đồng dạng tam giác ABC và BC2 = BH.BC
2, Kẻ phân giác BE Của góc ABC ( E thuộc AC ), BE cắt AH tại I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
2: Xét ΔBAE vuông tại A và ΔBHI vuông tại H có
góc ABE=góc HBI
=>ΔBAE đồng dạng với ΔBHI
3: góc AEI=góc BEA=góc BIH
góc BIH=góc AIE
=>góc AEI=góc AIE
=>AE=AI
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
Do đó: ΔHBA\(\sim\)ΔABC
b: Xét ΔBAC có BD là phân giác
nên DA/DC=BA/BC(1)
Xét ΔBHA có BI là phân giác
nên IH/IA=BH/BA(2)
Ta có: ΔHBA\(\sim\)ΔABC
nên BA/BC=BH/BA(3)
Từ (1), (2) và (3) suy ra IH/IA=DA/DC
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>góc HAB=góc ACB
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: BC=căn 15^2+20^2=25cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5
=>AD=7,5cm
BD=căn 15^2+7,5^2=15/2*căn 5(cm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
=>ΔHBA đồng dạng với ΔABC
b; Xét ΔABE vuông tại A và ΔACB vuông tại A có
góc ABE=góc ACB
=>ΔABE đồng dạng với ΔACB
=>AB/AC=AE/AB
=>AB^2=AE*AC
c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có
góc HBD=góc ABE
=>ΔBHD đồng dạng với ΔBAE
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=192/20=9,6cm
BH=AB^2/BC=7,2cm
c: góc ANM=90 độ-góc ABN
góc AMN=góc HMB=90 độ-góc NBC
mà góc ABN=góc NBC
nên góc AMN=góc ANM
=>ΔAMN cân tại A
1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)