K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

\(2\times\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{18x19}+\frac{1}{19x20}\right)\)

\(2x\left(1-\frac{1}{20}\right)=2x\frac{19}{20}=\frac{19}{10}\)

21 tháng 6 2018

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)

\(=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

\(=1.\left(1-\frac{1}{20}\right)\)

\(=1.\frac{19}{20}\)

\(=\frac{19}{20}\)

Lưu ý: Từ bước thứ 2 bạn chuyển thành số La-tinh nhé.

P/s: "." là nhân nhé.

7 tháng 7 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{19.20}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{19.20}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2.\left(1-\frac{1}{20}\right)\)

\(=2.\frac{19}{20}=\frac{19}{10}\)

22 tháng 6 2018

Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)

      \(=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

       \(=2.\left(1-\frac{1}{20}\right)=\frac{2.19}{20}=\frac{19}{10}\)

22 tháng 6 2018

\(\frac{2}{1\times2}+\frac{2}{2\times3}+......+\frac{2}{19\times20}\)

\(=2\left(\frac{1}{1\times2}+\frac{1}{2\times3}+.......+\frac{1}{19\times20}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2\left(1-\frac{1}{20}\right)=2.\frac{19}{20}=\frac{19}{10}\)

11 tháng 9 2018

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{9}{20}\)

11 tháng 9 2018

\(\frac{1}{2x3}\)\(\frac{1}{3x4}\)\(\frac{1}{4x5}\)+ ... + \(\frac{1}{18x19}\)\(\frac{1}{19x20}\)

\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{5}\)+ ... + \(\frac{1}{18}\)\(\frac{1}{19}\)\(\frac{1}{19}\)\(\frac{1}{20}\)

\(\frac{1}{2}\)\(\frac{1}{20}\)

\(\frac{18}{40}\)\(\frac{9}{20}\)

15 tháng 7 2017

Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{18.19}+\frac{2}{19.20}\)

\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

\(A=2\left(1-\frac{1}{20}\right)\)

\(A=2.\frac{19}{20}=\frac{19}{10}\)

15 tháng 7 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)

\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2\left(1-\frac{1}{20}\right)\)

\(=2.\frac{19}{20}\)

\(=\frac{19}{10}\)

3 tháng 8 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{18.19}+\frac{2}{19.20}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2.\left(1-\frac{1}{20}\right)\)

\(=2.\frac{19}{20}=\frac{19}{10}\)

29 tháng 6 2017

\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)

\(=\frac{4}{15}+\frac{9}{5}\)

\(=\frac{31}{15}\)

15 tháng 9 2020

              Bài làm :

Ta có :

\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}+\frac{2}{1\times2}+\frac{2}{2\times3}+...+\frac{2}{9\times10}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)

\(=\frac{31}{15}\)

15 tháng 7 2023

\(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{19\cdot20}\)

\(=2\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(=2\cdot\left(1-\dfrac{1}{20}\right)\)

\(=2\cdot\dfrac{19}{20}\)

\(=\dfrac{19}{10}\)

25 tháng 5 2018

a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{5}-\frac{1}{10}\)

\(=\frac{1}{10}\)

b) \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{998.1000}\)

\(=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{998}-\frac{1}{1000}\)

\(=\frac{1}{10}-\frac{1}{1000}\)

\(=\frac{99}{1000}\)

c) \(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{69.90}\)

\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{89.90}\right)\)

\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{89}-\frac{1}{90}\right)\)

\(=4.\left(1-\frac{1}{90}\right)\)

\(=4.\frac{89}{90}\)

\(=\frac{178}{45}\)

_Chúc bạn học tốt_

25 tháng 5 2018

a, \(=\frac{1}{10}\)