tính nhanh:
1 phần 1+2 cộng 1 phần 1+2+3 cộng 1 phần 1+2+3+4 cộng .... cộng 1 phần 1+2+3+...+2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3 . 2/7 + 1/3 . 5/7 + 1/3
= 1/3 ( 2/7 + 5/7 + 1 )
= 1/3 . 2
= 2/3
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}\)
\(2A=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{20-18}{18.19.20}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}=\dfrac{1}{2}-\dfrac{1}{19.20}\)
\(\Rightarrow A=\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right):2\)
\(\frac{1}{1}\)x 2 x 3 + \(\frac{1}{2}\)x 3 x 4 + \(\frac{1}{3}\)x 4 x 5 + \(\frac{1}{4}\)x 5 x 6
= 1 x 2 + \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)x 6
= 2 +\(\frac{1}{2}\)+ \(\frac{1}{3}\)+ 1, 5
=
Ta có : \(\frac{3}{5}+\frac{6}{11}+\frac{7}{13}+\frac{2}{5}+\frac{5}{11}+\frac{19}{13}+\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\)
\(=\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{6}{11}+\frac{5}{11}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)+\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\)
\(=1+1+2+1=5\)
= (3/5 + 2/5) + (6/11 + 5/11) + (7/13 + 19/13) : 1/2 + 2/3 - 1/6
= (1 + 1 + 2) : (1/2 + 4/6 - 1/6)
= 4 : (1/2 + 1/2)
= 4 : 1
= 4
Vậy kết quả bằng 4
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)
\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2019-2018}{2018.2019}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2019}\right)\)
\(=\frac{2017}{2019}\)