B1. Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có giá trị lớn nhất.
B2 . Cho a,b là các số nguyên thỏa mãn \(\left(5a-35b+12\right).\left(2a-7b+3\right)⋮5\). CMR \(42a-2b-7⋮5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt d=ƯCLN(12n+1;30n+2)
=>12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d; 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản
Bài 1:
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)
\(=\frac{9}{41}-\frac{206}{375}=\)
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)
Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)
Mà do \(n\in N\Rightarrow n^2+10-6n=1\)
\(\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\)
\(\Leftrightarrow n-3=0\)
\(\Leftrightarrow n=3\)
Vậy n=3.
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
a) ĐẶT \(A=\frac{7n-8}{2n-3}=\frac{7n-\frac{21}{2}+\frac{5}{2}}{2n-3}=\frac{\frac{7}{2}\left(2n-3\right)+\frac{5}{2}}{2n-3}=\frac{7}{2}+\frac{\frac{5}{2}}{2n-3}\)
Để A có GTLN\(\Leftrightarrow\frac{\frac{5}{2}}{2n-3}\)có GTLN
\(\Leftrightarrow2n-3\)có GTNN \(2n-3>0\)
\(\Leftrightarrow2n-3=1\)
\(\Leftrightarrow2n=4\)
\(\Leftrightarrow n=2\)
Vậy A có GTLN là 6 khi x=2
b) Ta có: \(\left(5a-3b+12\right)\left(2a-7b+3\right)⋮5\)
MÀ \(\left(5a-3b+12\right)̸⋮5\)(vì 12 ko chia hết cho 5)
\(\Rightarrow2a-7b+3⋮5\)
\(2a-2b-5b+3⋮5\)
MÀ \(5b⋮5\)
\(\Rightarrow2a-2b+3⋮5\)
Và \(40a-10⋮5\)
\(\Rightarrow2a-2b+3+40a-10⋮5\)
\(\Rightarrow42a-2b-7⋮5\left(ĐPCM\right)\)
cảm on bạn nhiều nha Huỳnh Phước Mạnh