Help me !!
Tìm 2 số nguyên tố x ; y sao cho 6y2 - 3x + 3 = x2 - 3x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt \(N=x^2+2x=x\left(x+2\right)\). Do \(x< x+2\) nên để N là số nguyên tố thì \(\left\{{}\begin{matrix}x=1\\x+2\in P\end{matrix}\right.\) (luôn đúng) (kí hiệu P là tập hợp các số nguyên tố).
Vậy \(x=1\) thỏa ycbt.
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
Ta xét các trường hợp sau:
+ Xét p = 2 => p + 1 = 3 ( là số nguyên tố )
và p + 5 = 7 ( là số nguyên tố )
+ xét p là số nguyên tố > 2 => p khi chia cho 2 có 1 dạng: p = 2k + 1 ( k \(\in\)N* )
- Nếu p = 2k + 1 => p + 1 = 2k + 2 ( là hợp số, loại )
- Nếu p = 2k + 1 => p + 5 = 2k + 6 ( là hợp số, loại )
Vậy số nguyên tố p = 2
p = 2 ; 4 ; 6 ; 8 ; ...
Cứ cộng 2 là ra số mới nhé
Đúng 100%
Đúng 100%
Đúng 100%
Tìm số nguyên tố n để 2n+7 và 5n+2 là hai số nguyên tố cùng nhau.
Plz help me
Đúng thì tick cho nhaaaa
Nếu p không chia hết cho 3 => p2 chia 3 dư 1 => p2 +2 chia hết cho 3 mà p2 +2 là số nguyên tố => p2 +2 =3 => p2 = 1 => vô lý
Nếu p chia hết cho 3
mà p là số nguyên tố
=> p= 3 => p2 +2 = 32 +2 =11 là số nguyên tố => chọn
Vậy p = 3
\(P=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{3600-\left(60-n\right)\left(60+n\right)}{60-n}.\) \(P=\frac{3600}{60-n}-\left(60+n\right).\)
Để P là số nguyên tố thì trước hết P phải là số nguyên. Khi n là số nguyên để P là số nguyên thì (60 - n) phải là ước của 3600, P>0.
suy ra n < 60 (Để P dương) như vậy n là ước của 60 \(n\in(1,2,3,4,5,6,10,12,15,30).\)
Kiểm tra lần lượt, ta thấy n = 10 , n= 12 và n = 15 thỏa mãn. n = 10 , P = 2 ; n = 12, P = 3 và n = 15 , P = 5.
ta có x2y + xy - x = xy (x+1)-x-1=xy(x+1) - (x+1) = (x+1)(xy-1)=5