Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn
Dễ thấy p>2 nên p lẻ
Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là các số nguyên tố)
Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3.
Nếu a=3=>p=5;b=7
Nếu p=3 =>a=1(ko là số nguyên tố)
Nếu b=3 =>p=1(ko là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
p/s:kham khảo
Bn tham khảo link này nha
https://olm.vn/hoi-dap/detail/63924859121.html
Gọi a,b,c,d,e là các số nguyên tố sao cho a=b+c =d-e giả sử ( b lớn hơn hoặc bằng c) Chứng tỏ rằng c=e=2,nên b,a,d là 3 số lẻ liên tiếp ,sau đó chứng tỏ b=3 Số nguyên tố phải tìm là:5(5=3+2=7-2)
Gọi a, b, c, d, e là các số nguyên tố sao cho a=b+c = d-e giả sử ( b \(\ge\)\(\)\(c\)\()\)
Chứng tỏ rằng c = e = 2, nên b, a, d là ba số lẻ liên tiếp, sau đó chứng tỏ b = 3.
Số nguyên tố phải tìm là 5 (5 = 3 + 2 = 7 - 2).
100% vì hok rùi
Dễ thấy p>2 nên p lẻ
Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là các số nguyên tố)
Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3.
Nếu a=3=>p=5;b=7
Nếu p=3 =>a=1(ko là số nguyên tố)
Nếu b=3 =>p=1(ko là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
\(\text{Gọi số nguyên tố đó là p }\)
\(\text{Dễ thấy}\)\(p>2\)\(\text{nên p lẻ}\)
\(\text{Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2}\)
\(\text{Như vậy p=a+2=b-2(a,b là các số nguyên tố)}\)
\(\text{Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3.}\)
\(\text{Nếu a=3}\)\(\Rightarrow\)\(\text{p=5;b=7}\)
\(\text{Nếu p=3}\)\(\Rightarrow\)\(\text{a=1(ko là số nguyên tố)}\)
\(\text{Nếu b=3}\)\(\Rightarrow\)\(\text{p=1(ko là số nguyên tố)}\)
\(\text{Vậy số nguyên tố cần tìm là 5}\)
\(\approx\)\(\text{Chúc bạn học tốt}\)\(\approx\)
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
có rất nhiều số thỏa mãn điều kiện đề bài