Một người đi xe đạp trên nửa quảng đường đầu với vận tốc v1=10km/h; nửa quảng đường sau với vận tốc v2=15km/h. Tính vận tốc trung bình của người đó trên hai quảng đường.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được
Thời gian đi nửa quãng đường đầu:
\(t_1=\dfrac{S_1}{v_1}=\dfrac{\dfrac{1}{2}S}{12}=\dfrac{S}{24}h\)
Thời gian đi nửa quãng đường sau:
\(t_2=\dfrac{S_2}{v_2}=\dfrac{\dfrac{1}{2}S}{20}=\dfrac{S}{40}h\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=15\)km/h
Thời gian đi quãng đường đầu và quãng đường sau là:
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩t1=S1v1=S2v1=S24(h)t2=S2v2=S2v2=S40(h){t1=S1v1=S2v1=S24(h)t2=S2v2=S2v2=S40(h)
Vận tốc trung bình là: vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)
Thời gian người đó đi nửa quãng đường đầu và nửa quãng đường sau lần lượt là:
\(t_1=\dfrac{s_1}{v_1}=\dfrac{s}{2v_1}\)
\(t_2=\dfrac{s_2}{v_2}=\dfrac{s}{2v_2}\)
Tốc độ trung bình trên cả đoạn đường là:
\(v=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{s}{\dfrac{s}{2v_1}+\dfrac{s}{2v_2}}=\dfrac{1}{\dfrac{1}{2v_1}+\dfrac{1}{2v_2}}\)
Thay số ta được:
\(v=\dfrac{1}{\dfrac{1}{2.15}+\dfrac{1}{2.20}}=17,14\) (km/h)
Gọi S(km) là quãng đường đi được(S>0)
\(\left\{{}\begin{matrix}t_1=\dfrac{S:2}{v_1}=\dfrac{S}{2v_1}=\dfrac{S}{2.15}=\dfrac{S}{30}\\t_2=\dfrac{S:2}{v_2}=\dfrac{S}{2v_2}=\dfrac{S}{2.10}=\dfrac{S}{20}\end{matrix}\right.\)
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{30}+\dfrac{S}{20}}=\dfrac{S}{S\left(\dfrac{1}{30}+\dfrac{1}{20}\right)}=\dfrac{1}{\dfrac{1}{12}}=12\left(km/h\right)\)
Tham khảo
Vtb = (S1 + S2)/(t1 + t2)=2S1/(S1/V1 + S2/V2) = 2/(1/V1 + 1/V2) ( cùng rút gọn cho S1)
<=> 8 = 2/(1/12 + 1/V2) => V2 = 6 (km/h)
Vậy vận tốc trên quãng đường còn lại là 6km/h.
\(v_{tb}=\dfrac{1}{\dfrac{\dfrac{1}{2}}{v_1}+\dfrac{\dfrac{1}{2}}{v_2}}\\ \Leftrightarrow8=\dfrac{1}{\dfrac{\dfrac{1}{2}}{12}+\dfrac{\dfrac{1}{2}}{v_2}}\\ \Leftrightarrow8=\dfrac{1}{\dfrac{1}{24}+\dfrac{1}{2v_2}}\\ \Leftrightarrow8.\left(\dfrac{1}{24}+\dfrac{1}{2v_2}\right)=1\\ \Leftrightarrow\dfrac{1}{2v_2}=\dfrac{1}{8}-\dfrac{1}{24}=\dfrac{1}{12}\\ \Leftrightarrow v_2=\dfrac{1.12}{2.1}=6\left(\dfrac{km}{h}\right)\)
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}\Rightarrow10=\dfrac{S_{tổng}}{\dfrac{S_{tổng}}{15}+\dfrac{S_{tổng}}{v_2}}=\dfrac{S_{tổng}}{S_{tổng}\left(\dfrac{1}{15}+\dfrac{1}{v_2}\right)}=\dfrac{1}{\dfrac{1}{15}+\dfrac{1}{v_2}}\)
\(\Rightarrow\dfrac{1}{v_2}=\dfrac{1}{10}-\dfrac{1}{15}=\dfrac{1}{30}\Rightarrow v_2=30\left(\dfrac{km}{h}\right)\)
Thời gian đi 1/3 quãng đường đầu:
t1= \(\dfrac{S}{3v_1}\)
Thời gian đi 1/3 quãng đường giữa:
t2= \(\dfrac{S}{3v_2}\)
Thời gian đi 1/3 quãng đường cuối:
t3= \(\dfrac{S}{3v_3}\)
Vận tốc trung bình trên cả đoạn đường AB là:
vtb= \(\dfrac{S}{t_1+t_2+t_3}\)= \(\dfrac{S}{\dfrac{S}{3v_1}+\dfrac{S}{3v_2}+\dfrac{S}{3v_3}}\)= \(\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{1}{3v_2}+\dfrac{1}{3v_3}}\)
Thay v1, v2 và v3 vào ta được:
vtb= 13,85(km/h)
ta có:
thời gian người đó đi trên nửa đoạn đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{30}\)
thời gian người đó đi trên đoạn đường còn lại là:
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}\)
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{30}+\frac{S}{2v_2}}=\frac{1}{\frac{1}{30}+\frac{1}{2v_2}}\)
\(\Leftrightarrow10=\frac{1}{\frac{1}{30}+\frac{1}{2v_2}}\Rightarrow v_2=7,5\)
Tóm tắt:
v1 = 10 km/h
v2 = 15 km/h
vtb = ?
Giải:
Gọi s là quãng đường người đó đi.
Thời gian người đó đi nửa quãng đường đầu là:
v1 = s1 / t1 => t1 = s1 / v1 = (s / 2) / 10 = s / 20 ( h )
Thời gian người đó đi nửa quãng đường còn lại là:
v2 = s2 / t2 => t2 = s2 / v2 = (s/2) / 15 = s / 30 ( h )
Tốc độ trung bình của người đó trên cả hai quãng đường:
vtb = \(\dfrac{s}{t}=\dfrac{s}{t1+t2}=\dfrac{s}{\dfrac{s}{20}+\dfrac{s}{30}}=\dfrac{1}{\dfrac{1}{20}+\dfrac{1}{30}}=12\) ( km / h)