Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian đi nửa quãng đường đầu:
\(t_1=\dfrac{S_1}{v_1}=\dfrac{\dfrac{1}{2}S}{12}=\dfrac{S}{24}h\)
Thời gian đi nửa quãng đường sau:
\(t_2=\dfrac{S_2}{v_2}=\dfrac{\dfrac{1}{2}S}{20}=\dfrac{S}{40}h\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=15\)km/h
Thời gian đi quãng đường đầu và quãng đường sau là:
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩t1=S1v1=S2v1=S24(h)t2=S2v2=S2v2=S40(h){t1=S1v1=S2v1=S24(h)t2=S2v2=S2v2=S40(h)
Vận tốc trung bình là: vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)
Gọi s là chiều dài nửa quãng đường mà người đi xe đạp phải đi.
Như vậy, thời gian đi hết nửa quãng đường đầu s1 = s với vận tốc v1 là:
Thời gian đi hết nửa quãng đường còn lại s2 = s với vận tốc v2 là:
Vậy tổng thời gian đi hết cả quãng đường là:
Vận tốc trung bình của người đi xe đạp trên cả quãng đường là:
Vận tốc người đi xe đạp đi nửa quãng đường còn lại là:
\(v_{tb}=\dfrac{2}{\dfrac{1}{12}+\dfrac{1}{v_2}}=\dfrac{2}{\dfrac{1}{4}}=8\left(\dfrac{km}{h}\right)\)
=> \(\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\) => \(v_2=6\left(\dfrac{km}{h}\right)\)
Đáp số: 6 km/h.
Vtb = (S1 + S2)/(t1 + t2)=2S1/(S1/V1 + S2/V2) = 2/(1/V1 + 1/V2) ( cùng rút gọn cho S1)
<=> 8 = 2/(1/12 + 1/V2) => V2 = 6 (km/h)
Vậy vận tốc trên quãng đường còn lại là 6km/h.
Thời gian đi nửa quãng đường đầu:
\(t_1=\dfrac{S_1}{v_1}=\dfrac{\dfrac{1}{2}S}{2}=\dfrac{S}{4}s\)
Thời gian đi nửa quãng đường sau:
\(t_2=\dfrac{S_2}{v_2}=\dfrac{\dfrac{1}{2}S}{v_2}=\dfrac{\dfrac{1}{2}S}{3}=\dfrac{S}{6}s\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{S}{t_1+t_2}=\dfrac{S}{\dfrac{S}{4}+\dfrac{S}{6}}=\dfrac{S}{\dfrac{5S}{12}}=2,4\)(m/s)
Vận tốc trung bình trên cả quãng đường :
vtb = \(\frac{s}{\frac{s}{2\cdot v_1}+\frac{s}{2\cdot v_2}}\) = \(\frac{2\cdot v_1\cdot v_2}{v_1+v_2}\)
mà vtb = 8 km/h, v1 = 12 km/h.
Suy ra v2 = 6 km/h.
Ta có :
\(V_{tb}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{t_1+t_2}=\dfrac{2S}{\dfrac{S}{V_1}+\dfrac{S}{V_2}}=\dfrac{2}{\dfrac{1}{V_1}+\dfrac{1}{V_2}}\left(1\right)\)
Thay \(V_1=12\)km/h
\(V_{tb}=8\)km/h
\(\Rightarrow\) Thay vào \(\left(1\right)\) ta được:
\(8=\dfrac{2}{\dfrac{1}{12}+\dfrac{1}{V_2}}\)
\(\Leftrightarrow\dfrac{1}{12}+\dfrac{1}{V_2}=\dfrac{2}{8}\)
\(\Leftrightarrow\dfrac{1}{V_2}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)
\(\Leftrightarrow V_2=6\)km/h
Vậy \(V_2=6\)(km/h)
Thời gian người đó đi nửa quãng đường đầu và nửa quãng đường sau lần lượt là:
\(t_1=\dfrac{s_1}{v_1}=\dfrac{s}{2v_1}\)
\(t_2=\dfrac{s_2}{v_2}=\dfrac{s}{2v_2}\)
Tốc độ trung bình trên cả đoạn đường là:
\(v=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{s}{\dfrac{s}{2v_1}+\dfrac{s}{2v_2}}=\dfrac{1}{\dfrac{1}{2v_1}+\dfrac{1}{2v_2}}\)
Thay số ta được:
\(v=\dfrac{1}{\dfrac{1}{2.15}+\dfrac{1}{2.20}}=17,14\) (km/h)
Tham khảo
Vtb = (S1 + S2)/(t1 + t2)=2S1/(S1/V1 + S2/V2) = 2/(1/V1 + 1/V2) ( cùng rút gọn cho S1)
<=> 8 = 2/(1/12 + 1/V2) => V2 = 6 (km/h)
Vậy vận tốc trên quãng đường còn lại là 6km/h.
\(v_{tb}=\dfrac{1}{\dfrac{\dfrac{1}{2}}{v_1}+\dfrac{\dfrac{1}{2}}{v_2}}\\ \Leftrightarrow8=\dfrac{1}{\dfrac{\dfrac{1}{2}}{12}+\dfrac{\dfrac{1}{2}}{v_2}}\\ \Leftrightarrow8=\dfrac{1}{\dfrac{1}{24}+\dfrac{1}{2v_2}}\\ \Leftrightarrow8.\left(\dfrac{1}{24}+\dfrac{1}{2v_2}\right)=1\\ \Leftrightarrow\dfrac{1}{2v_2}=\dfrac{1}{8}-\dfrac{1}{24}=\dfrac{1}{12}\\ \Leftrightarrow v_2=\dfrac{1.12}{2.1}=6\left(\dfrac{km}{h}\right)\)