K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Đặt ƯCLN ( a,b ) = d ( d thuộc N )

Thay a = 5n + 3 , b = 6n + 1

=> \(\hept{\begin{cases}5n+3⋮d\\6n+1⋮d\end{cases}}\)=> \(\hept{\begin{cases}6.\left(5n+3\right)⋮d\\5.\left(6n+1\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}30n+18⋮d\\30n+5⋮d\end{cases}}\)=> ( 30n + 18 ) - ( 30n + 5 ) \(⋮d\)

=> 13 \(⋮\)d => d thuộc Ư ( 13 ) = { 1 ; 13 } mà d lớn nhất => d = 13

ƯCLN ( 5n + 3 ; 6n + 1 ) = 13 hay ƯCLN ( a , b ) = 13

Vậy ƯCLN ( a , b ) = 13

28 tháng 12 2017

ƯCLN(a,b)=13

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

3 tháng 8 2015

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

9 tháng 11 2016

câu đó bằng d

9 tháng 12 2016

 a/GỌI ƯCLN CỦA A VÀ B LÀ D

ƯCLN (4n+3;5n+1)=D

suy ra {4n+3 chia hết cho D

           {5n+1 chia hết cho D

suy ra{5(4n+3) chia hết cho D

          {4(5n+1) chi hết cho D

suy ra 5(4n+3)-4(5n+1) chia hết cho D 

suy ra (20n+3)-(20n+1) chia hết cho D

suy ra          3   -    1      chia hết cho D

suy ra              2             chia hết cho D

SUY RA D thuộc Ư(2)

suy ra D =2 (tm đề bài)

VẬY ƯCLN  của (a;b) = 2

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

28 tháng 12 2017

Đặt ƯCLN(a,b)=c (c thuộc N)

​thay a=5n+3,b=6n+1

  • suy ra { 5n+3 chia het cho d;6n+1 chia hết cho d =>{6*(5n+3 chia hết cho d,5*(6n+1) chia hết cho d =>{30n+18 chia hết cho d,30n+5 chia hết cho d=>(30n+18) -(30n+5) chia hết cho d

=>13 chia hết cho d=>d thuộc Ư(13) mà d lớn nhất => d=13

  • ƯCLN(5n+3;6n+1)=13hay ƯCLN(a,b)=13 .Vậy ƯCLN(a,b)=13
15 tháng 1 2023

a) Dễ thấy P = 102120 + 2120

= 102120 + 212.10

= 10(102119 + 212) 

=> P \(⋮10\)

Lại có P = 102120 + 2120

= 10(102119 + 212)

= 10.(1000...00 + 212) 

         2119 số 0

= 10.1000...0212

          2116 số 0

Tổng các chữ số của số S = 1000...0212 (2116 chữ số 0)

là 1 + 0 + 0 + 0 +.... + 0 + 2 + 1 + 2 (2116 hạng tử 0)

= 1 + 2 + 1 + 2 = 6 \(⋮3\)

=> S \(⋮3\Rightarrow P=10S⋮3\)

mà \(\left\{{}\begin{matrix}P⋮10\\P⋮3\\\left(10,3\right)=1\end{matrix}\right.\Rightarrow P⋮10.3\Rightarrow P⋮30\)

 

 

   

15 tháng 1 2023

Gọi (a,b) = d \(\left(d\inℕ^∗;d\ne1\right)\)

=> \(\left\{{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5.(2n+3)⋮d\\2.(5n+2)⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10n+15⋮d\left(1\right)\\10n+4⋮d\left(2\right)\end{matrix}\right.\)

Lấy (1) trừ (2) ta được 

(10n + 15) - (10n + 4) \(⋮d\)

<=> 11 \(⋮d\)

\(\Leftrightarrow d\in\left\{1;11\right\}\) mà d \(\ne1\)

<=> d = 11 

Vậy (a;b) = 11