Cho hình thang ABCD ( AB < CD) AB//CD; E,F lần lượt là trung điểm của AD, BC. Gọi giao điểm của AD và BC là K, của AC và BD là O, KO cắt CD ở H, cắt AB ở I.Biết EF=\(\sqrt{12,1234}\)cm.Tính tổng IA+DH(làm tròn 4 chữ số)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ AH và BK vuông góc với CD (H; k thuộc CD)
Dễ dàng c/m được ABKH là hình vuông => AB=KH
=> CD-AB=CD-KH=(DH+CK)
Xét tg vuông ADH có DH<AD
Xét tg vuông BCK có CK<BC
Mà AD=BC (hình thang ABCD là hình thang cân)
=> CK<AD
=> DH+CK<2AD
=> CD-AB<2AD
Từ D dóng DE⊥ABDE⊥AB, từ C dóng CE⊥EFCE⊥EF
Ta có : DC = EF (DCEF hình chữ nhật)(tự CM nhé, dễ lắm)
⇒DC−AB=EF−AB=AF+BE⇒DC−AB=EF−AB=AF+BE(1)
Xét ΔAFD(ˆF=90o)ΔAFD(F^=90o) có :
AD>AFAD>AF (n/x)
Xét ΔBEC(ˆE=90o)ΔBEC(E^=90o) có :
BC>BEBC>BE (n/x)
⇒AF+BE<AD+BC⇒AF+BE<AD+BC(2)
Từ (1) và (2)
⇒DC−AB<AD+BC
Từ D dóng DE vuông AB, từ C dóng CE vuông EF.
Ta có : DC = EF (DCEF hình chữ nhật)
Ta có : DC - AB = EF - AB = AF + BE (*)
Xét ▲AFD (90 độ) có :
AD > AF (n/x)
Xét ▲BEC (có E = 90 độ)
=> AF + BE < AD + BC (**)
Từ (*) (**)
=> DC - AB < AD + BC
kẻ 1 đg vuông góc từ B cắt DC tại K
xét tg ADH và tg BCK :
góc AHD= góc BKC ( = 90 độ )
AD= BC ( gt )
góc ADH= góc BCK ( gt )
=> tg ADH= tg BCK ( ch- gn)
=> DH= KC ( 2 cạnh t/ứ ) ( 1)
vì AB song song DC=> ABKD là hcn ( tự chứng minh)
=> AB=Dk= 8 cm
=> DH= KC= (DC-DK ) :2= 3 cm
áp dụng đlí pi-ta-go cho tg ADH vuông ở H :
AH2+DH2= AD2
TS : AH2= 52-32
=> AH = 4 cm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)