Cho ΔABC có AB = 3 cm; AC = 4 cm; BC = 5 cm.
a) Chứng tỏ ΔABC vuông tại A.
b) Vẽ phân giác BD (D thuộc AC), từ D vẽ DE ⊥BC (E ∈ BC). Chứng minh DA = DE.
c) ED cắt AB tại F. Chứng minh ΔADF = ΔEDC rồi suy ra DF > DE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Sửa đề: AD=AC
a: Xét ΔACE vuông tại C và ΔADE vuông tại D có
AE chung
AC=AD
=>ΔACE=ΔADE
=>góc CAE=góc DAE
=>AE là phân giác của góc CAD
b: AC=AD
EC=ED
=>AE là trung trực của CD
1:
a: Xét ΔNAB và ΔNEM có
NA=NE
góc ANB=góc ENM
NB=NM
=>ΔNAB=ΔNEM
b: Xét ΔBAM có BA=BM
nên ΔBAM cân tại B
c: Xét ΔCAE có
CN là trung tuyến
CM=2/3CN
=>M là trọng tâm
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
a) Sửa đề: ΔABC\(\sim\)ΔANM
Xét ΔABC vuông tại A và ΔANM vuông tại A có
\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\left(\dfrac{24}{13.5}=\dfrac{32}{18}\right)\)
Do đó: ΔABC\(\sim\)ΔANM(c-g-c)
b) Ta có: ΔABC\(\sim\)ΔANM(cmt)
nên \(\widehat{ABC}=\widehat{ANM}\)(hai góc tương ứng)
mà \(\widehat{ABC}\) và \(\widehat{ANM}\) là hai góc ở vị trí so le trong
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có
AB=AE
AC chung
=>ΔABC=ΔAEC
b: Xet ΔCEB có
CA,BH là trung tuyến
CA cắt BH tại M
=>M là trọng tâm
=>CM=2/3*12=8cm
c: Xét ΔCBE có
A là trung điểm của BE
AK//CE
=>K la trung điểm của BC
=>E,M,K thẳng hàng
a. Ta có: 32+42=52
9+16=25
=> Tam giác ABC là tam giác vuông tại A (định lí Py-ta-go đảo)
b. Xét tam giác ABD và tam giác DBE có:
góc A= góc E (=90º)
góc ABD=góc DBE (BD là tia phân giác của góc B)
BD là cạnh huyền chung
=> tam giác ABD = tam giác DBE(cạnh huyền- góc nhọn)
=> DA=DE (2 cạnh tương ứng)
c. Xét tam giác ADF và tam giác EDC có:
góc A= góc E (=90º)
góc ADF=góc EDC (đối đỉnh)
AD=DC (c/m ở câu b)
=> tam giác ADF = tam giác EDC (cạnh góc vuông-góc nhọn kề)
Ta có: góc A>góc C (vì A là góc vuông, C là góc nhọn)
=> DF > DE (quan hệ giữa đường xiên và hình chiếu)
a) Xét 2 tam giác ABC
Áp dụng định lý Pytago đảo có:
BC2 = 5252 = 15
AB2+AC2=32+42=9+16=25
=> Tam giác ABC vuông tại A
b)
Xét 2 tam giác vuông ABD và tam giác EBD có:
Góc B1 = góc B2 (gt)
BD là cạnh huyền chung
=> Tam giác ABD = tam giác EBD (cạnh huyền- góc nhọn)
=> AD=ED (đpcm)
c)
Xét 2 tam giác vuông ADF và tam giác EDC có:
Góc D1 = góc D2 (đối đỉnh)
AD = ED (vì tam giác ABD = tam giác EBD)
=> tam giác ADF = tam giác EDC (cạnh góc vuông- góc nhọn kề cạnh ấy)
=> DF = DC (2 cạnh tương ứng)
Xét tam giác EDC vuông tại E có:
DC > DE ( cạnh huyền > cạnh góc vuông)
mà DF = DC
=> DF > DE (đpcm)
CHÚC BN HỌC TỐT ^-^