Cho tam giác ABC biết BC=1cm; AB=6cm. Tính độ dài cạnh AC biết độ dài này là một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài cạnh AC là x (x >0). Theo bất đẳng thức tam giác ta có:
9 − 1 < x < 9 + 1 ⇔ 8 < x < 10 Vì x là số nguyên nên x = 9. Vậy độ dài cạnh AC = 9cm
Chu vi tam giác là: A B + B C + A C = 1 + 9 + 9 = 19 c m
Chọn đáp án C.
Xét ΔABC có AC-BC<AB<AC+BC
=>5<AB<7
=>AB=6cm
=>ΔABC cân tại A
Theo bất đẳng thức tam giác ABC ta có:
\(AC – BC < AB < AC + BC \)
Thay BC = 1cm, AC = 7cm, ta được:
\(7 – 1 < AB < 7 + 1\)
\(6 < AB < 8 (1)\)
Vì độ dài AB là một số nguyên (cm) thỏa mãn (1) nên AB = 7cm
Do đó ΔABC cân tại A vì AB = AC = 7cm.
tham khảo:
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Thay BC = 1cm, AC = 7cm, ta được:
7 – 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên (cm) thỏa mãn (1) nên AB = 7cm
Do đó ΔABC cân tại A vì AB = AC = 7cm.
* Cách dựng tam giác ABC
- Vẽ BC = 1cm
- Dựng đường tròn tâm B bán kính 7cm ; đường tròn tâm C bán kính 7cm. Hai đường tròn cắt nhau tại A.
Theo bất đẳng thức tam giác ABC có :
Có AC–BC<AB<AC+BC
có 7–1<AB<7+1
6<AB<8 (1)
Vì độ dài AB là số nguyên thỏa mãn với (1) nên AB = 7 cm
Do đó ∆ ABC là tam giác cân vì nó cân tại a và có AB= AC = 7 cm
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Theo độ dài BC = 1cm, AC = 7cm
7 – 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm
Do đó ∆ ABC cân tại A vì AB = AC = 7cm
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AD^2+AB^2\)
\(\Leftrightarrow AB^2=BD^2-AD^2=\left(\sqrt{10}\right)^2-1^2=9\)
hay AB=3(cm)
Xét ΔABD vuông tại A có
\(\sin\widehat{ABD}=\dfrac{AD}{BD}=\dfrac{1}{\sqrt{10}}\)
nên \(\widehat{ABD}\simeq18^026'\)
mà \(\widehat{ABC}=2\cdot\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABC}\))
nên \(\widehat{ABC}\simeq2\cdot18^026'=36^052'\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\cos\widehat{ABC}\)
\(\Leftrightarrow BC=\dfrac{AB}{\cos\widehat{ABC}}=\dfrac{3}{\cos36^052'}\)
hay \(BC\simeq3.75cm\)
Vậy: \(BC\simeq3.75cm\)
bạn tự kẻ hình nhé
bl
vì H thuộc BC=>HB+HC=BC
mà HB=2cm .HC=3cm
=>BC=5cm
kẻ IK vuông góc AC;IF vuông góc AB
S tam giác BIC=(IH*BC):2=2,5
----------------AIC=(IK*AC):2
----------------AIB=(IF*AB):2
mà tam giác ABC chia thành 3 tam giác = nhau:AIB,AIC,ABC=>S tam giác ABC=2,5*3=7,5
Đáp số 7,5
Theo bất đẳng thức tam giác ABC ta có:
AB – BC < AC < AB + BC
Theo độ dài BC = 1cm, AB = 6cm
6 – 1 < AC < 6 + 1
5 < AC < 7 (1)
Vì độ dài AC là một số nguyên thỏa mãn (1) nên AC = 6cm
Do đó ∆ ABC cân tại A vì AB = AC = 6cm
Học tốt# mui #
Trả lời:
Ta có : 6–1, AC<6+16–1, AC<6+1 hay 5<AC<75<AC<7 mà độ dài AC là một số nguyên nên AC = 6cm.
~Học tốt!~