K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2021

Đặt \(AB=a\), qua N kẻ đường thẳng song song BC cắt AB và CD lần lượt tại P và Q

Theo Talet: \(\Rightarrow\dfrac{NQ}{AD}=\dfrac{CQ}{CD}=\dfrac{CN}{AC}=\dfrac{1}{4}\Rightarrow\left\{{}\begin{matrix}NQ=\dfrac{a}{4}\Rightarrow NP=\dfrac{3a}{4}\\CQ=BP=\dfrac{a}{4}\Rightarrow DQ=AP=\dfrac{3a}{4}\\\end{matrix}\right.\) 

Pitago tam giác ADM: \(DM^2=AM^2+AD^2=\dfrac{5a^2}{4}\)

Pitago tam giác MNP: \(MN^2=MP^2+PN^2=\dfrac{5a^2}{8}\)

Pitago tam giác DQN: \(DN^2=DQ^2+QN^2=\dfrac{5a^2}{8}\)

\(\Rightarrow\left\{{}\begin{matrix}MN=DN\\MN^2+DN^2=DM^2\end{matrix}\right.\) \(\Rightarrow\Delta DMN\) vuông cân tại N

Gọi I là trung điểm DM \(\Rightarrow IN\perp DM\)

Phương trình đường thẳng qua N và vuông góc DM có dạng:

\(0\left(x+\dfrac{3}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow y-\dfrac{1}{2}=0\)

Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}x-1=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow I\left(1;\dfrac{1}{2}\right)\)

\(\Rightarrow\overrightarrow{IN}=\left(-\dfrac{5}{2};0\right)\Rightarrow IN=\dfrac{5}{2}\)

\(\Rightarrow DI=IN=\dfrac{5}{2}\)

Do D thuộc x-1=0 nên tọa độ có dạng \(D\left(1;d\right)\) \(\Rightarrow\overrightarrow{ID}=\left(0;d-\dfrac{1}{2}\right)\)

\(\Rightarrow\left|d-\dfrac{1}{2}\right|=\dfrac{5}{2}\Rightarrow d=-2\)

\(\Rightarrow D\left(1;-2\right)\)

Từ đây dễ dàng xác định tọa độ các điểm còn lại.

Gọi K là giao điểm AC và DM, theo Talet: 

\(\dfrac{AK}{CK}=\dfrac{KM}{DK}=\dfrac{AM}{DC}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}DK=\dfrac{2}{3}DM=\dfrac{4}{3}DI\\AK=\dfrac{1}{3}AC=\dfrac{4}{9}AN\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{DK}=\dfrac{4}{3}\overrightarrow{DI}\Rightarrow\) tọa độ K

\(\overrightarrow{AK}=\dfrac{4}{9}\overrightarrow{AN}\Rightarrow\) tọa độ A

Tọa độ D, tọa độ I \(\Rightarrow\) tọa độ M \(\Rightarrow\) tọa độ B

\(\Rightarrow\) Tọa độ C

NV
15 tháng 7 2021

undefined

Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\).                                                                                    Câu 2. Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b)...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\).                                                                                    Câu 2Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b) Tìm tọa độ hình chiếu của A lên BC.                Câu 3. Cho tam giác ABCđều cạnh a , có AH là đường trung tuyến. Tính \(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|\).            Câu 4. Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?                                              Câu 5. Để kéo đường dây điện băng qua một cái hồ hình chữ nhậtvới độ dài AB =140m , AD = 50m. Người ta dự định làm cột điện liên tiếp thẳng hàng và cách đều nhau. Cột thứ nhất nằm trên bờ AB và cách đỉnh A một khoảng bằng 10m. Cột thứ năm nằm trên bờ CD và cách đỉnh C một khoảng bằng 30m. Tính khoảng cách từ cột thứ tư đến bờ AD.

1

Câu 3:

\(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|=\sqrt{AC^2+AH^2+2\cdot AC\cdot AH\cdot cos30}\)

\(=\sqrt{a^2+\left(\dfrac{a\sqrt{3}}{2}\right)^2+2\cdot a\cdot\dfrac{a\sqrt{3}}{2}\cdot\dfrac{\sqrt{3}}{2}}\)

\(=\sqrt{a^2+\dfrac{3}{4}a^2+\dfrac{3a^2}{4}}=\dfrac{\sqrt{7}}{2}a\)

5 tháng 5 2023

Để giải bài toán này, ta cần sử dụng các kiến thức về hình học phẳng và đường thẳng.

Trước tiên, ta xác định tọa độ của điểm A. Vì AB là đường chéo của hình vuông nên ta có thể sử dụng định lí Pythagoras trong tam giác vuông ABD để tính độ dài cạnh của hình vuông, rồi suy ra tọa độ của điểm A.

Với AB: x-y+4=0, ta có hai điểm A thỏa mãn điều kiện này: A(x,y)=(y-4,y) và A'(x',y')=(x'+4,x'). Vì độ dài cạnh của hình vuông là xác định nên ta chỉ cần tìm được một điểm trên cạnh AB, chẳng hạn A, để suy ra tọa độ của các điểm còn lại.

Giả sử ta chọn A(y-4,y), ta có

Tọa độ của B là (y, y-4) (vì AB là đường chéo)Tọa độ của C là (y-4, -y) (vì ABCD là hình vuông)Tọa độ của D là (-y, y-4) (vì ABCD là hình vuông)

Ta dễ dàng tính được tọa độ của M và N:

Tọa độ của M là ((y+y-4)/2, (y-4)/2) = (y-2, -2)Tọa độ của N là (x, 2x+6) với điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương. Thay x-2y-6=0 vào ta có x=2y+6, suy ra tọa độ của N là (2y+6, 2x+6) = (2y+6, 4y+18)

Tiếp theo, ta tính khoảng cách d giữa đường thẳng AB và điểm H. Theo công thức, ta có d(H, AB) = |Ax + By + C| / sqrt(A^2 + B^2), với (A, B, C) là vector pháp tuyến của đường thẳng AB.

Vì AB: x-y+4=0 nên vector pháp tuyến của AB là (1, -1). Điểm H là giao điểm của hai đường thẳng AM và BN nên ta dễ dàng tính được tọa độ của H là ((y-2)/2, (y-4)/2). Thay vào công thức tính khoảng cách ta có d(H, AB) = |y-2 + 2y-4 + 4| / sqrt(1+1) = 8sqrt(2)/2 = 4sqrt(2).

Vậy, tọa độ các đỉnh của hình vuông là:

A(y-4, y)B(y, y-4)C(y-4, -y)D(-y, y-4)

Và tọa độ của M và N là:

M(y-2, -2)N(2y+6, 4y+18) với y > 0

Khoảng cách giữa đường thẳng AB và điểm H là 4sqrt(2).

20 tháng 1 2021
18 tháng 3 2022

undefined

18 tháng 3 2022

undefined

25 tháng 11 2023

1: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\)(1)

K là trung điểm của CD

=>\(DK=KC=\dfrac{DC}{2}\)(2)

ABCD là hình vuông

=>AB=DC(3)

Từ (1),(2),(3) suy ra AE=EB=CK=KD

Xét tứ giác AECK có

AE//CK

AE=CK

Do đó: AECK là hình bình hành

2: Xét ΔFCD vuông tại C và ΔEBC vuông tại B có

FC=EB

CD=BC

Do đó: ΔFCD=ΔEBC

=>\(\widehat{FDC}=\widehat{ECB}\)

mà \(\widehat{FDC}+\widehat{DFC}=90^0\)(ΔDFC vuông tại C)

nên \(\widehat{ECB}+\widehat{DFC}=90^0\)

=>DF\(\perp\)CE tại M

3: AECK là hình bình hành

=>AK//CE

AK//CE

CE\(\perp\)DF

Do đó: AK\(\perp\)CE tại N

Xét ΔDMC có

K là trung điểm của DC

KN//MC

Do đó: N là trung điểm của DM

4: Xét ΔADM có

AN là đường cao

AN là đường trung tuyến

Do đó: ΔADM cân tại A

=>AD=AM

mà AD=AB

nên AM=AB