Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
a, \(-\dfrac{2}{3}+\left|\dfrac{1}{2}x-3\right|\ge-\dfrac{2}{3}\)
Dấu ''='' xảy ra khi x = 6
Vậy GTNN biểu thức trên là -2/3 khi x = 6
b, \(1,6-\left|2x-1\right|\le1,6\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN biểu thức trên là 1,6 khi x = 1/2
a) Ta có: \(\left|\dfrac{1}{2}x-3\right|\ge0\forall x\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-3\right|-\dfrac{2}{3}\ge-\dfrac{2}{3}\forall x\)
Dấu '=' xảy ra khi x=6
b) Ta có: \(\left|2x-1\right|\ge0\)
\(\Leftrightarrow-\left|2x-1\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-1\right|+1.6\le1.6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a: (2x-3)^2>=0
=>-(2x-3)^2<=0
=>D<=-3
Dấu = xảy ra khi x=3/2
b: (2x-5)^2>=0
(y+1/2)^2>=0
=>(2x-5)^2+(y+1/2)^2>=0
=>D>=2022
Dấu = xảy ra khi x=5/2 và y=-1/2
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
1)\(C=-\left|2-3x\right|+\dfrac{1}{2}\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi: \(x=\dfrac{3}{2}\)
\(D=-3-\left|2x+4\right|\le-3\)
Dấu "=" xảy ra khi: \(x=-2\)
2) \(B=\left(2x^2+1\right)^4-3\ge1^4-3=-2\)
Dấu "=" xảy ra khi: \(x=0\)
\(C=\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2+11\ge11\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-2\end{matrix}\right.\)
Bài 1 :
a) Vì ( x + 1 )2 ≥ 0 ∀ x
=> M = ( x + 1 )2 - 3 ≥ -3
Dấu "=" xảy ra <=> ( x + 1 )2 = 0
<=> x + 1 = 0 <=> x = -1
b) Vì ( y + 3 )2 ≥ 0 ∀ x
=> N = 5 - ( y + 3 )2 ≥ 5
Dấu "=" xảy ra <=> ( y + 3 )2 = 0
<=> y + 3 = 0 <=> y = -3
A=4,C=3
1. Ta có: \(\left|x+3\right|\ge0\) với mọi \(x\inℚ\)
=> \(\left|x+3\right|+4\ge4\) với mọi \(x\inℚ\)
=> GTNN của A là 4.
Dấu "=" xảy ra <=> \(x=-3\)
2. Ta có: \(-\left|2x-3\right|\le0\) với mọi \(x\inℚ\)
=> \(-\left|2x-3\right|+3\le3\) với mọi \(x\inℚ\)
=> GTlN của C là 3.
Dấu "=" xảy ra <=> \(2x=3\) hay \(x=\dfrac{3}{2}\)