K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

a, \(-\dfrac{2}{3}+\left|\dfrac{1}{2}x-3\right|\ge-\dfrac{2}{3}\)

Dấu ''='' xảy ra khi x = 6

Vậy GTNN biểu thức trên là -2/3 khi x = 6

b, \(1,6-\left|2x-1\right|\le1,6\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTLN biểu thức trên là 1,6 khi x = 1/2 

a) Ta có: \(\left|\dfrac{1}{2}x-3\right|\ge0\forall x\)

\(\Leftrightarrow\left|\dfrac{1}{2}x-3\right|-\dfrac{2}{3}\ge-\dfrac{2}{3}\forall x\)

Dấu '=' xảy ra khi x=6

b) Ta có: \(\left|2x-1\right|\ge0\)

\(\Leftrightarrow-\left|2x-1\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-1\right|+1.6\le1.6\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

21 tháng 11 2016

B =1 - /2x-3/

Vì /2x-3/ lớn hơn bằng 0 (với mọi x)

=> B nhỏ hơn bằng 1 (với mọi x)

Dấu "=" xày ra khi: /2x-3/=0

                             2x-3=0

                             2x=3

                             x= \(\frac{3}{2}\)

Vậy GTLN của B là 1 khi x=\(\frac{3}{2}\)

7 tháng 8 2020

Bài làm:

Ta có: \(P=\frac{2x-1}{x-1}=\frac{\left(2x-2\right)+1}{x-1}=2+\frac{1}{x-1}\)

Để P đạt GTLN

=> \(\frac{1}{x-1}\) đạt GTLN => \(x-1\) đạt giá trị dương nhỏ nhất

Mà x nguyên => x - 1 nguyên

=> \(x-1=1\Rightarrow x=2\)

Vậy Max(P) = 3 khi x = 2

7 tháng 8 2020

\(P=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)( ĐKXĐ : x khác 1 )

Để P đạt GTLN => \(\frac{1}{x-1}\)đạt GTNN

=> x - 1 là số dương nhỏ nhất

=> x - 1 = 1

=> x = 2 ( tmđk )

Vậy PMax = \(2+\frac{1}{2-1}=2+1=3\), đạt được khi x = 2

Mình không chắc nha -.-

16 tháng 3 2022

\(A=\left(2x-50\right)^{10}-12\ge-12\)

Dấu ''='' xảy ra khi x = 25 

\(B=-\left|3x-2\right|+18\le18\)

Dấu ''='' xảy ra khi x = 2/3 

16 tháng 3 2018

a) Đặt \(A=10+2x-5x^2\)

\(-A=5x^2-2x-10\)

\(-5A=25x^2-10x-50\)

\(-5A=\left(25x^2-10x+1\right)-51\)

\(-5A=\left(5x-1\right)^2-51\)

Do \(\left(5x-1\right)^2\ge0\forall x\)

\(\Rightarrow-5A\ge-51\)

\(A\le\frac{51}{5}\)

Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)

b) Đặt \(B=x^2-6x+10\)

\(B=\left(x^2-6x+9\right)+1\)

\(B=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\forall x\)

\(B\ge1\)

Dấu "=" xảy ra khi :

\(x-3=0\Leftrightarrow x=3\)

Vậy Min B \(=1\Leftrightarrow x=3\)