K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

Đặt n+6=a2    n+1=b2 (a,b dương a>b)

=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)

Mình làm đại đó,ahihi  :v

24 tháng 6 2017

Mình mới lớp 5 thôi nhưng mình sẽ cho bạn 1 câu trả lời

Số 3

Xin lỗi bạn nhé mong bạn thông cảm

25 tháng 6 2017

Đặt \(n+6=a^2;n+1=b^2\)Ta có:

\(a^2-b^2=\left(n+6\right)-\left(n+1\right)\) 

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=5\)

Ta có bảng: 

a+b 1 5-1-5
a-b 5 1-5-1
a 3 3-3-3
b 2-2 -2 2
a2=n+6 9 9 9 9
b2=n+1 4 4 4 4
n 3 3 3 3
 Thỏa mãnThỏa mãnThỏa mãnThỏa mãn

Vậy n=3

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

5 tháng 4

Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
          =a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
           =b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.