K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2023

Ta có  thuộc phân giác của �^;

��⊥����⊥�� ⇒��=�� (tính chất tia phân giác của một góc).

Gọi  là trung điểm của ��.

Xét △��� và △���, có

���^=���^=90∘ (�� là trung trực của �� ),

��=�� (già thiết),

�� là cạnh chung.

Do đó △���=△��� (hai cạnh góc vuông)

⇒��=�� (hai cạnh tương ứng).

Xét △��� và △���, có

���^=���^=90∘ (giả thiết);

��=�� (chứng minh trên);

��=�� (chứng minh trên).

Do đó △���=△��� (cạnh huyền - cạnh góc vuông)

⇒��=�� (hai cạnh tương ứng).

Ta có D thuộc phân giác của \widehat{A};

D H \perp A BD K \perp A C \Rightarrow D H=D K (tính chất tia phân giác của một góc).

Gọi G là trung điểm của BC.

Xét \triangle B G D và \triangle C G D, có

\widehat{B G D}=\widehat{C G D}=90^{\circ} (DG là trung trực của B C ),

BG=CG (già thiết),

DG là cạnh chung.

Do đó \triangle B G D=\triangle C G D (hai cạnh góc vuông)

\Rightarrow B D=C D (hai cạnh tương ứng).

Xét \triangle B H D và \triangle C K D, có

\widehat{B H D}=\widehat{C K D}=90^{\circ} (giả thiết);

D H=D K (chứng minh trên);

B D=C D (chứng minh trên).

Do đó \triangle B H D=\triangle C K D (cạnh huyền - cạnh góc vuông)

\Rightarrow B H=C K (hai cạnh tương ứng).