Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{100}\right)=2.\frac{49}{100}=\frac{49}{50}\)
\(S=1+2+3+...+99+100\)
\(S=\left(100+1\right).\left[\left(100-1\right)+1\right]:2=5050\)
Số lượng số hạng của tổng S là :
\(\left(100-1\right):1+1=100\) ( số )
Tổng S có giá trị là :
\(\frac{\left(100+1\right)\times100}{2}=5050\)
Đáp số: \(5050\)
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(.........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)
A=1-2-3+4+5-6-7+8+...+97-98-99+100
=>A=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=>A=0+0+....+0=0
vậy A=0
B=1-2+2^2-2^3+...+2^100
=>2B=2-2^2+2^3-2^4+....+2^101
=>2B+B=1-2^101=3B
=>B=1-2^101/3
C= 2^100-2^99-2^98-...-2^2-2-1
=>C=2^100-(2^99+2^98+.....+2^2+2+1)
Đặt D=2^99+2^98+.....+2^2+2+1
=>2D=2^100+2^99+.....+2^3+2^2+2
=>2D-D=2^100-1=D
=>C=2^100-(2^100-1)=1
tick nha
hic!ngày kia phải nộp rồi ! mọi người giúp mình nhanh nha!
10 + (2x - 1) 2 : 3 = 13
=> (2x - 1) 2 : 3 = 13 - 10
=> (2x - 1) 2 : 3 = 3
=> (2x - 1) 2 = 3 . 3
=> (2x - 1) 2 = 3 2
=> 2x - 1 = 3
=> 2x = 3 + 1
=> 2x = 4
=> x = 2
10 + (2x - 1)2 : 3 = 13
=> (2x - 1)2 : 3 = 13 - 10
=> (2x - 1 )2 : 3 = 3
=> (2x - 1)2 = 9
=> (2x - 1)2 = 32
=> 2x - 1 = 3
=> 2x = 4
=> x = 2
Vậy x = 2
M = \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\)
=> 5M = 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)
=> 5M - M = ( 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)) - ( \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\))
4M = 1 - \(\left(\frac{1}{5}\right)^{50}\)
=> M = \(\frac{1-\left(\frac{1}{5}\right)^{50}}{4}\)< \(\frac{1}{4}\)
theo mình nghĩ là như th61 này
\(2\cdot2^{99}-2^{99}=2^{99}\)
\(2^{99}=2\cdot2^{98}\)
\(2\cdot2^{98}-2^{98}=2^{98}\)
vậy tức là \(2^n-2^{n-1}=2^{n-1}\)
đến cuối bạn sẽ có \(2^3-2^2=4\)
4-2-1=1