K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Ke BH vuong goc voi Ac tai I. Goc ACD+DAC=90 do. Goc DAC+AHI=90 do. Ma AHI=BHD(doi dinh).=>BHD=ACD.=>tanBHD=tanACD=BD/HD. 
=>tanB.tanC=AD/BD.BD/HD=2

20 tháng 7 2017

A B C D E H

trong tam giac ABD ta co \(\tan B=\frac{AD}{BD}\)

                       ADC co \(\tan C=\frac{AD}{CD}\)

suy ra \(\tan B\cdot\tan C=\frac{AD^2}{BD\cdot CD}\) (1)

\(\Delta BDH~\Delta ADC\left(g.g\right)\)\(\Rightarrow\frac{DH}{DC}=\frac{DB}{AD}\Rightarrow BD\cdot DC=DH\cdot AD\)(2)

tu (1)(2) \(\Rightarrow\tan B\cdot\tan C=\frac{\left(2DH\right)^2}{DH\cdot2DH}=2\)

trong tam giac ABD ta co tanB=ADBD 

                       ADC co tanC=ADCD 

suy ra tanB·tanC=AD2BD·CD  (1)

ΔBDH~ΔADC(g.g)⇒DHDC =DBAD ⇒BD·DC=DH·AD(2)

tu (1)(2) ⇒tanB·tanC=(2DH)2DH·2DH =2

10 tháng 7 2021

undefined

undefined

10 tháng 7 2021

hình hơi rối đó bạn nhé

A B C D I R H K J M N O

Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB

Ta có \(DH.DA=DB.DC\)(1)

Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)

Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên

\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)

\(\Rightarrow AK.HD=AD.HK\)

\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)

\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)

\(\Leftrightarrow2.AD.DH=2.DK.DJ\)

\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)

Từ (1) và (2) ta  có\(DK.DJ=DH.DA\)

=> K là trực tâm của tam giác IBC

7 tháng 1 2020

Hình hơi rối, bạn tự vẽ hình nhé!

Lấy điểm S đối xứng với H qua BC, R là giao điểm của KC và MB.

Vì \(ME=MA=MH\)( tính chất trung tuyến )

Kết hợp tính đối xứng của điểm S ta có: 

\(\widehat{MSB}=\widehat{BHD}=\widehat{MHE}=\widehat{MEB}\)

=> Tứ giác MESB nội tiếp

\(\Rightarrow\widehat{RBE}=\widehat{MSE}\left(1\right)\)

Lại có: \(\widehat{KSC}=\widehat{CHD}=\widehat{AHF}=\widehat{AEK}\)

Nên tứ giác KSCE cũng nội tiếp

=> \(\widehat{MSE}=\widehat{RCE}\left(2\right)\)

Từ ( 1 ) và ( 2 ) =>\(\widehat{RBE}=\widehat{RCE}\) 

Nên tứ giác RBCE nội tiếp

=> \(\widehat{BRC}=\widehat{BEC}=90^o\)

Trong \(\Delta MBC\)có: \(MK\perp BC\)và \(CK\perp MB\)

Nên K là trực tâm của \(\Delta BMC\)

a: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: góc HBC+góc HCB=90 độ-góc ABC+90 độ-góc ACB

=góc BAC

=>góc BHC=180 độ-góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng M qua BC

=>BH=BM và CH=CM

Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

=>ΔBHC=ΔBMC

=>góc BMC=góc BHC

=>góc BMC+góc BAC=180 độ

=>ABMC nội tiếp

c: Xét tứ giác BHCN có

BC cắt HN tại trung điểm của mỗi đường

=>BHCN là hìnhbình hành

=>góc BHC=góc BNC

=>góc BNC+góc bAC=180 độ

=>ABNC nội tiếp

30 tháng 3 2022
Ai giúp em với😢