K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

hhv vbmkj55144466

14 tháng 3 2022

Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)\(\dfrac{2015}{2016}\) (ĐCPCM)

19 tháng 2 2018

Ta có :   A = 3^1 + 3^2 + 3^3 + ... + 3^2016 

    Số lượng số của A là : 

                ( 2016 - 1 ) : 1 + 1 = 2016 ( số ) 

   Do \(2016⋮4\)nên ta nhóm 4 số liền nhau thành 1 nhóm như sau : 
        A   =     3^1 + 3^2 + 3^3 + ... = 3^2016

   => A = ( 3^1 + 3^2 + 3^3 + 3^4 ) + ( 3^5 + 3^6 + 3^7 + 3^8 ) + ... + ( 3^2013 + 3^2014 + 3^2015 + 3^2016 ) 
   => A =   3^1 . ( 1 + 3 + 3^2 + 3^3 ) + 3^5 . ( 1 + 3 + 3^2 + 3^3 ) + ...+ 3^2013 . ( 1 + 3 + 3^2 + 3^3  )

   => A  = 3^1 . 40 + 3^5 . 40 + ... + 3^2013 . 40

   => A  =    40 . ( 3^1 + 3^5 + ...+3^2013 ) \(⋮5\)( vì 40 \(⋮5\)) ( ĐPCM ) 

Tham khảo cách của mk nhé !

19 tháng 2 2018

A = 3^1 + 3^2 + 3^3 + ... + 3^2016 

    = ( 3^1 + 3^2 + 3^3 + 3^4 ) + ( 3^5 + 3^6 + 3^7 + 3^8 ) +....+ ( 3^2013 + 3^2014 + 3^2015 + 3^2016 )

    = 120 + 3^5 ( 3^1 + 3^2 + 3^3 + 3^4 ) + ... + 3^2013( 3^1 + 3^2 + 3^3 + 3^4 )

    = 120 + 3^5 . 120 + ... + 3^1 . 120

    = 120 . ( 1 + 3^5 + ... + 3^2013 ) chia hết cho 5

Vậy chia hết cho 5

27 tháng 11 2016

=> A = ( 3 + 32 ) + ( 33 + 34 ) + .... + ( 32015 + 32016 )

= 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + .... + 32015 ( 1 + 3 )

= 3.4 + 33.4 + ... + 32015.4

= 4( 3 + 33 + ... + 32015 ) là bội của 4 ( đpcm )

29 tháng 3 2017

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}+\frac{1}{2017^2}\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}+\frac{1}{2017.2017}\)

Ta thấy \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{2016.2016}< \frac{1}{2016.2017};\frac{1}{2017.2017}< \frac{1}{2017.2018}\)

Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}+\frac{1}{2017.2018}\)

Nên \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-...+\frac{1}{2017}-\frac{1}{2018}\)

Khi đó \(A< 1-\frac{1}{2018}< 1\)nên A < 1

Suy ra A - 1 < 0

Vậy A - 1 < 0

\(A=\left(\dfrac{456}{2}+1\right)+...+\left(\dfrac{2}{456}+1\right)+\left(\dfrac{1}{457}+1\right)+1\)

\(A=458+\dfrac{458}{2}+....+\dfrac{458}{456}+\dfrac{458}{457}-\dfrac{458}{458}\)

\(A=458\left(\dfrac{1}{2}+...+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\right)\)

Ta xét \(\dfrac{1}{2}+....+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\)có :

\(\dfrac{1}{2}=\dfrac{1}{2}\)

\(\dfrac{1}{3}+\dfrac{1}{4}>\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{8}>\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}=\dfrac{1}{2}\)

\(\dfrac{1}{9}+\dfrac{1}{10}+....+\dfrac{1}{16}>\dfrac{1}{16}+....+\dfrac{1}{16}=\dfrac{1}{2}\)

\(\dfrac{1}{17}+\dfrac{1}{18}+....+\dfrac{1}{32}>\dfrac{1}{32}+.....+\dfrac{1}{32}=\dfrac{1}{2}\)

\(\dfrac{1}{33}+\dfrac{1}{34}+....+\dfrac{1}{64}>\dfrac{1}{64}+....+\dfrac{1}{64}=\dfrac{1}{2}\)

\(\dfrac{1}{65}+\dfrac{1}{66}+.....+\dfrac{1}{128}>\dfrac{1}{128}+....+\dfrac{1}{128}=\dfrac{1}{2}\)

\(\dfrac{1}{129}+\dfrac{1}{130}+.....+\dfrac{1}{256}>\dfrac{1}{256}+....+\dfrac{1}{256}=\dfrac{1}{2}\)

\(\dfrac{1}{257}+\dfrac{1}{258}+....+\dfrac{1}{458}>\dfrac{1}{458}+...+\dfrac{1}{458}=\dfrac{1}{2}\)

Vậy ta thấy được rằng

\(\dfrac{1}{2}+...+\dfrac{1}{456}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{202}{458}\)

\(=4+\dfrac{202}{458}=\dfrac{2034}{458}\)

Vậy \(A>458.\dfrac{2034}{458}=2034\)

Hay tức là A > 2016 ( đpcm )