Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(\frac{101}{19}.\) \(\frac{61}{218}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)
= \(\frac{101}{218}.\frac{61}{19}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)
=\(\frac{101}{218}.\left(\frac{61}{19}-\frac{42}{19}\right)+\frac{117}{218}\)
=\(\frac{101}{218}.\frac{19}{19}+\frac{117}{218}\)
=\(\frac{101}{218}.1+\frac{117}{218}\)
=\(\frac{101}{218}+\frac{117}{218}\)
=\(\frac{218}{218}\)\(=1\)
b) B = \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).\left(\frac{4}{5}-\frac{3}{4}-\frac{1}{20}\right)\)
= \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right)\)\(.\left(\frac{1}{20}-\frac{1}{20}\right)\)
= \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).0\)
= \(0\)
ta có A=\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)(1)
B=\(\frac{2011}{2012}+\frac{2012}{2013}\left(2\right)\)
so sánh 1 và 2 ta có A<B
B=2011+2012/2012+2013
=2011/2012+2013 +2012/2012+2013<2011/2012 +2012/2013=a
vậy........................
\(B=\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\)
\(=\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+...+\left(\frac{1}{2011}+1\right)-2011\)
\(=\frac{2012}{1}+\frac{2012}{2}+...+\frac{2012}{2011}+\frac{2012}{2012}-2012\)
\(=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)
Do đó: \(\frac{B}{A}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2012}\right)}\)
\(=\frac{1}{2012}\)
Ta có A=2010/2011+2011/2012
=(1-1/2011)+(1-1/2012)
=1-1/2011+1-1/2012
=(1+1)-(1/2011+1/2012)
=2-(1/2011+1/2012)
=>A<2
Vì 1/2011+1/2012<1/2+1/2=1
=>2>A>1(1)
Ta có B=(2010+2011)/(2011+2012)
=(2011+2012-2)/(2011+2012)
=1-2/(2011+2012)
=>B<1(2)
Từ (1) và (2) => A>B
b,Ta có
\(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
\(\Rightarrow P>Q\)
\(A=\frac{-10}{20}+\frac{-10}{30}+\frac{-10}{42}+\frac{-10}{56}+\frac{-10}{72}+\frac{-10}{90}+\frac{-10}{110}\)
\(=-10\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\right)\)
\(=-10\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\right)\)
\(=-10\left(\frac{1}{4}-\frac{1}{11}\right)\)
\(=\frac{-35}{22}\)
A=\(\frac{2012^{2012}+1}{2012^{2013}+1}\)
\(\Rightarrow\)A<\(\frac{2012^{2012}+1+2011}{2012^{2013}+1+2011}\)
<\(\frac{2012^{2012}+2012}{2012^{2013}+2012}\)
<\(\frac{2012\left(2012^{2011}+1\right)}{2012\left(2012^{2012}+1\right)}\)
<\(\frac{2012^{2011}+1}{2012^{2012}+1}\)
<B
Vậy A<B
\(1,a,\frac{2012.2011-1}{2010.2012+2011}\)
\(=\frac{2010.2012+2012-1}{2010.2012+2011}\)
\(=\frac{2010.2012+2011}{2010.2012+2011}\)
\(=1\)