K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Câu 1 :

Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)

\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)

Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)

\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)

Vì 10101+1<10102+1 

\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)

\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)

\(\Rightarrow\)10A>10B

\(\Rightarrow\)A>B

Vậy A>B.

8 tháng 2 2020

Câu 2 :

Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)

Vì 2001<2001+2002 và 2002<2001+2002

\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)

\(\Rightarrow C>E\)

Vậy C>E.

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

ta có      A=\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)(1)

             B=\(\frac{2011}{2012}+\frac{2012}{2013}\left(2\right)\)

so sánh 1 và 2 ta có           A<B                       

12 tháng 7 2015

B=2011+2012/2012+2013

=2011/2012+2013 +2012/2012+2013<2011/2012 +2012/2013=a

vậy........................

\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}=A\)

vậy A>B

21 tháng 7 2015

\(A=\frac{2011}{2012}+\frac{2012}{2013}\)  \(và\)   \(B=\frac{2011+2012}{2012+2013}\)

\(Ta\)    \(có\) \(:\)   \(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)

                     \(B=\frac{2011}{4025}+\frac{2012}{4025}\)

\(Vì\)    \(\frac{2011}{2012}>\frac{2011}{4025}và\frac{2012}{2013}>\frac{2012}{4025}\)

\(Nên\)  \(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{4025}+\frac{2012}{4025}\)

\(Vậy\)   \(A=\frac{2011}{2012}+\frac{2012}{2013}>B=\frac{2011+2012}{2012+2013}\)

 

 

27 tháng 5 2019

Bài 1:

a) b) c) sẽ có bạn giải cho em thôi vì nó dễ tính tay cũng đc

d) \(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{23.26}\)

\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{26}\right)\)

\(=\frac{4}{3}.\frac{6}{13}\)

\(=\frac{8}{13}\)

 Bài 2:

a) b) c) 

d)\(|\frac{5}{8}x+\frac{6}{7}|-\frac{4}{7}=\frac{10}{7}\)

\(\Leftrightarrow|\frac{5}{8}x+\frac{6}{7}|=2\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{6}{7}=2\\\frac{5}{8}x+\frac{6}{7}=-2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{8}{7}\\\frac{5}{8}x=\frac{-20}{7}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{64}{35}\\x=\frac{-32}{7}\end{cases}}}\)

Vậy \(x\in\left\{\frac{64}{35};\frac{-32}{7}\right\}\)

27 tháng 5 2019

Bài 1 :

a) \(\left(\frac{2}{5}-\frac{5}{8}\right):\frac{11}{30}+\frac{1}{8}\)

\(=\frac{-9}{40}:\frac{11}{30}+\frac{1}{8}\)

\(=\frac{-27}{44}+\frac{1}{8}\)

\(=\frac{-43}{88}\)

20 tháng 7 2018

Ta chứng minh bài toán phụ:

Với a<b thì\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(c\inℕ^∗\right)\)

Ta có: \(a< b\)

\(\Rightarrow ac< bc\)

\(\Rightarrow ac+ba< bc+ba\)

\(a\left(b+c\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)

                 đpcm

Áp dụng vào bài toán ta có:

\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)

Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)

Tham khảo nhé~

20 tháng 7 2018

Đặt  \(A=\frac{10^{19}+1}{10^{20}+1}\)

\(\Rightarrow10A=\frac{10^{20}+10}{10^{20}+1}=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)

\(B=\frac{10^{20}+1}{10^{21}+1}\)

\(\Rightarrow10B=\frac{10^{21}+10}{10^{21}+1}=\frac{10^{21}+1+9}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)

\(\Rightarrow\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\)

\(\Rightarrow1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\)

\(\Rightarrow10A>10B\Rightarrow A>B\)

6 tháng 3 2020

k chép đề

3/2.A=\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)

3/2A-A=(\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)) - (\(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2012}\))

1/2 . A =\(\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}\)

A=\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)

B-A=\(\frac{\left(\frac{3}{2}\right)^{2018}}{2}-\)\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)

\(B-A=\frac{\frac{1}{2}}{2}=\frac{1}{2}:2=\frac{1}{4}\)

6 tháng 3 2020

à chết  Nguyễn Thị Hiền  ơi câu cuối mik quên mất

B-A=\(\frac{\frac{-1}{2}}{2}\)

B-A=\(\frac{-1}{4}\) nhé

cám ơn đã đọc

15 tháng 1 2020

b,                 \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)

=\(\frac{2^2.78}{104}\)=\(\frac{312}{104}\)=3