K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$

$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$

$25C-C=(5^3+5^{102})-(5+1)$

$24C=5^{102}-119$

$C=\frac{5^{102}-119}{24}$

27 tháng 7 2023

    

 

2 tháng 10 2015

bài A và B nè bạn!

A=1+3+32+...+3100

3A=3+32+33+...+3101

=>3A+1=1+3+32+...+3100+3101=A+3101

=>3A-A=3101-1

2A=3101-1

A=(3101-1)/2

B=1+4+42+...+450

4B=4+42+...+451

4B+1=1+4+42+...+450+451=B+451

=>4B-B=451-1

3B=451-1

B=(451-1)/3

 

13 tháng 8 2018

A = 2100 - 299 - 298 - ...-2-1

=> 2A = 2101 - 2100 - 299-...-22 - 2

=> 2A-A = 2101 - 2100 - 2100 + 1

A = 2101 - 2100.(1+1) + 1

A = 2101 - 2100. 2+1

A = 2101- 2101+1

A = 1

b) B = 1 - 5 + 52 - 53+...+598-599

=> 5B = 5 - 52+53-54+...+599-5100

=> 5B+B = -5100+1

6B = -5100+1

\(B=\frac{-5^{100}+1}{6}\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$

$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$

$\Rightarrow 5^2A-A=5^{202}-1$

$\Rightarrow 24A=5^{202}-1$

$\Rightarrow A=\frac{5^{202}-1}{24}$

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lơ giải:

$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$

$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$

$\Rightarrow 5^2A-A=5^{202}-1$

$\Rightarrow 24A=5^{202}-1$

$\Rightarrow A=\frac{5^{202}-1}{24}$

11 tháng 10 2015

A = (3101 - 1) : 2

B = sai đề

C = sai đề

D = (3151 - 3100) : 2

24 tháng 7 2017

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

24 tháng 10 2023

A=20+21+22+23+...++23+...+250250

2�=2+22+23+...+2512A=2+22+23+...+251

2�−�=�=251−202AA=A=25120

�=5+52+53+...+599+5100B=5+52+53+...+599+5100

5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101

5�−�=4�=5101−55BB=4B=51015

�=5101−54B=451015

�=3−32+33−34+...+C=332+3334+...+32007−32008+32009−320103200732008+3200932010

3�=32−33+34−35+...−32008+32009−32010+320113C=3233+3435+...32008+3200932010+32011

3�+�=4�=32011+33C+C=4C=32011+3

�=32011+34C=432011+3

�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)9S100S100=8S100=5×(91001)

�100=5×(9100−1)8S100=85×(91001)