Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lơ giải:
$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$
$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$
$\Rightarrow 5^2A-A=5^{202}-1$
$\Rightarrow 24A=5^{202}-1$
$\Rightarrow A=\frac{5^{202}-1}{24}$
a) \(A=1+2+2^2+2^3+...+2^{60}\)
=>\(2A=2+2^2+2^3+2^4+...+2^{61}\)
=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{60}\right)\)
=>\(A=2^{61}-1\)
b) \(B=1+3+3^2+3^3+...+3^{46}\)
=>\(3B=3+3^2+3^3+3^4+...+3^{47}\)
=>\(3B-B=\left(3+3^2+3^3+3^4+...+3^{47}\right)-\left(1+3+3^2+3^3+...+3^{46}\right)\)
=>\(2A=3^{47}-1\)
=>\(B=\frac{3^{47}-1}{2}\)
c) \(C=1+5^2+5^4+...+5^{200}\)
=>\(5^2C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C-C=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right)\)
=>\(24C=5^{202}-1\)
=>\(C=\frac{5^{202}-1}{24}\)
a) A = \(1+2+2^2+2^3+...+2^{60}\)
2A = \(2.\left(1+2+2^2+2^3+...+2^{60}\right)\)
2A = \(2+2^2+2^3+2^4+...+2^{61}\)
2A - A = \(\left(2+2^2+2^3+2^4+...+2^{61}\right)\)- \(\left(1+2+2^2+2^3+...+2^{60}\right)\)
A = \(2^{61}-1\)
b)B = \(1+3+3^2+3^3+...+3^{46}\)
3B = \(3.\left(1+3+3^2+3^3+...+3^{46}\right)\)
3B = \(3+3^2+3^3+3^4+...+3^{47}\)
3B - B = \(\left(3+3^2+3^3+3^4+...+3^{47}\right)\)- \(\left(1+3+3^2+3^3+...+3^{46}\right)\)
2B = \(3^{47}-1\)
B = \(\left(3^{47}-1\right):2\)
1. Đặt A = 1 + 52 + 54 + ... + 5^200
Ta có: 52A = 52 + 54 + 56 + ... + 5^202
25A - A = (52 + 54 + ... + 5202) - (1 + 52 + ... + 5200)
24A = 5202 - 1 => A = (5202 - 1) : 24
2. Ta có : 777222 = (7772)111
222777= (2227)11111
Vì 7772 < 2227 => (2227)111 > (7772)111
=> 222777 > 777222
1,\(A=\)\(1+2+2^2+2^3+...+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=\)\(2^{2016}-1\)
~~~Hok tốt~~~
2,\(B=3^{11}+3^{12}+3^{13}+...+3^{101}\)
\(\Rightarrow3B=3^{12}+3^{13}+3^{14}+...+3^{102}\)
\(\Rightarrow3B-B=\left(3^{12}+3^{13}+3^{14}+...+3^{102}\right)-\left(3^{11}+3^{12}+3^{13}+...+3^{101}\right)\)
\(\Rightarrow2B=3^{102}-3^{11}\)
\(\Rightarrow B=\frac{3^{102}-3^{11}}{2}\)
~~~Hok tốt~~~
Giải:
a) \(4.2^5:\left(2^3.\dfrac{1}{16}\right)\)
\(=4.2^5:\dfrac{2^3}{16}\)
\(=2^2.2^5:\dfrac{2^3}{2^4}\)
\(=2^7:\dfrac{1}{2}\)
\(=2^6=64\)
Vậy ...
b) \(\dfrac{8^5.10^4.25^3}{16^4.625^3}\)
\(=\dfrac{2^{15}.2^4.5^4.5^6}{2^8.5^{12}}\)
\(=\dfrac{2^{19}.5^{10}}{2^8.5^{12}}\)
\(=\dfrac{2^{11}}{5^2}\)
Vậy ...
c) \(C=2^{200}-2^{199}+2^{198}-2^{197}+...+2^2-2\)
\(\Leftrightarrow C=\left(2^{200}-2^{199}\right)+\left(2^{198}-2^{197}\right)+...+\left(2^2-2\right)\)
\(\Leftrightarrow C=2^{199}\left(2-1\right)+2^{197}\left(2-1\right)+...+2\left(2-1\right)\)
\(\Leftrightarrow C=2^{199}+2^{197}+...+2\)
\(\Leftrightarrow4C=2^{201}+2^{199}+...+2^3\)
\(\Leftrightarrow3C=4C-C=2^{201}-2\)
\(\Leftrightarrow C=\dfrac{2^{201}-2}{3}\)
Vậy ...
S = 54 + 56 + 58 + ....... + 52016
52S = 56 + 58 + 510 + ... + 52018
( 52S - S ) = ( 56 + 58 + 510 + ... + 52018 ) - ( 54 + 56 + 58 + ....... + 52016 )
24S = 52018 - 54
S = ( 52018 - 54 ) : 24
4x4S=56+58+510+...........+52018
16S=52018-54
S=(52018-54):16
chỗ nào k hỉu thì cứ hỏi
nhung phai k
A=1+52+54+...+5200
52A=52+54+...+5202
52A+1=1+52+54+...+5200+5202=A+5202
25A-A=5202-1
24A=5202-1
A=\(\frac{5^{202}-1}{24}\)
Lời giải:
$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$
$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$
$\Rightarrow 5^2A-A=5^{202}-1$
$\Rightarrow 24A=5^{202}-1$
$\Rightarrow A=\frac{5^{202}-1}{24}$