Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài A và B nè bạn!
A=1+3+32+...+3100
3A=3+32+33+...+3101
=>3A+1=1+3+32+...+3100+3101=A+3101
=>3A-A=3101-1
2A=3101-1
A=(3101-1)/2
B=1+4+42+...+450
4B=4+42+...+451
4B+1=1+4+42+...+450+451=B+451
=>4B-B=451-1
3B=451-1
B=(451-1)/3
A = (3101 - 1) : 2
B = sai đề
C = sai đề
D = (3151 - 3100) : 2
Chơi câu khó nhất
D = 4 + 42 + 43 + ... + 4n
4D = 42 + 43 + ... + 4n+1
3D = 4n+1 - 4
D = \(\frac{4^{n+1}-4}{3}\)
a) \(A=2+2^2+2^3+....+2^{100}\)
\(2A=2^2+2^3+2^4+....+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+....+2^{101}\right)-\left(2+2^2+....+2^{100}\right)\)
\(A=2^{101}-2\)
B) \(B=1+3+3^2+3^3+...+3^{2009}\)
\(3B=3+3^2+3^3+3^4+...+3^{2010}\)
\(3B-B=\left(3+3^2+3^3+3^4+...+3^{2010}\right)-\left(1+3+3^2+...+3^{2009}\right)\)
\(2B=3^{2010}-1\)
\(B=\frac{3^{2010}-1}{2}\)
C) \(C=1+5+5^2+....+5^{1998}\)
\(5C=5+5^2+5^3+...+5^{1999}\)
\(5C-C=\left(5+5^2+5^3+...+5^{1999}\right)-\left(1+5+5^2+...+5^{1998}\right)\)
\(4C=5^{1999}-1\)
\(C=\frac{5^{1999}-1}{4}\)
D) \(D=4+4^2+4^3+...+4^n\)
\(4D=4^2+4^3+4^4+...+4^{n+1}\)
\(4D-D=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)
\(3D=-4\)
\(D=\frac{-4}{3}\)
Ý D mk ko bít đúng ko
hok tốt k mk nhé
\(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)'
\(B=1+3+3^2+3^3+...+3^{2009}\)
\(3B=3+3^2+3^3+...+3^{2010}\)
\(3B-B=3^{2010}-1\)
\(2B=3^{2010}-1\)
\(B=\frac{3^{2010}-1}{2}\)
\(C=1+5+5^2+5^3...+5^{1998}\)
\(5C=5+5^2+...+5^{1999}\)
\(5C-C=5^{1999}-1\)
\(4A=5^{1999}-1\)
\(A=\frac{5^{1999}-1}{4}\)
\(D=4+4^2+4^3+...+4^n\)
\(4D=4^2+4^3+...+4^{n+1}\)
\(4D-D=4^{n+1}-4\)
\(3D=4^{n+1}-4\)
\(D=\frac{4^{n+1}-4}{3}\)
1,\(A=\)\(1+2+2^2+2^3+...+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=\)\(2^{2016}-1\)
~~~Hok tốt~~~
2,\(B=3^{11}+3^{12}+3^{13}+...+3^{101}\)
\(\Rightarrow3B=3^{12}+3^{13}+3^{14}+...+3^{102}\)
\(\Rightarrow3B-B=\left(3^{12}+3^{13}+3^{14}+...+3^{102}\right)-\left(3^{11}+3^{12}+3^{13}+...+3^{101}\right)\)
\(\Rightarrow2B=3^{102}-3^{11}\)
\(\Rightarrow B=\frac{3^{102}-3^{11}}{2}\)
~~~Hok tốt~~~
A = 20 + 21 + 22 + ... + 22006
2A = 2 + 22 + 23 +...+ 22006 + 22007
2A - A = ( 2 + 22 + 23 + ... + 22006 + 22007 ) - ( 20 + 21 + 22 +...+ 22006 )
A = 22007 - 1