Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt <=> \(\dfrac{1}{x}-\dfrac{1}{x+5}=\dfrac{1}{550}\)
<=> \(\dfrac{\left(x+5\right)-x}{x\left(x+5\right)}=\dfrac{1}{550}\)
<=> \(\dfrac{5}{x\left(x+5\right)}=\dfrac{1}{550}\)
<=> \(x^2+5x=2750\)
<=> \(x^2+5x-2750=0\)
<=> \(\left(x^2+5x+2,5^2\right)-52,5^2=0\) (bước này hơi tắt xíu nha :<)
<=> \(\left(x+2,5\right)^2-52,5^2=0\)
<=> \(\left(x+55\right)\left(x-50\right)=0\)
<=> \(\left[{}\begin{matrix}x+55=0\\x-50=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-55\\x=50\end{matrix}\right.\)
Vậy nghiệm của phương trình là x \(\in\left\{-55;50\right\}\)
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
\(\dfrac{1100\left(x+5\right)-1100x}{x\left(x+5\right)}=\dfrac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(1100x+5500-1100x=2x^2+10x\)
\(2x^2+10x-5500=0\)
Δ' \(=5^2-2\left(-5500\right)\)
Δ'\(=11025\)
\(\left[{}\begin{matrix}x=50\\x=-55\end{matrix}\right.\)
đk : x khác 0 ; -5
\(1100x+5500-1100x=2x\left(x+5\right)\)
\(\Leftrightarrow2x^2+10x-5500=0\Leftrightarrow x=50;x=-55\)(tm)
gọi HPT trên là (1)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{x+y}{xy}=\dfrac{9}{2}\\xy+\dfrac{1}{xy}=\dfrac{5}{2}\end{matrix}\right.\)
Đặt x+y=a;xy=b(b#0).HPT trở thành:
\(\left\{{}\begin{matrix}a+\dfrac{a}{b}=\dfrac{9}{2}\left(!\right)\\b+\dfrac{1}{b}=\dfrac{5}{2}\left(!!\right)\end{matrix}\right.\)
Giải PT (!!) ta được \(b_1=2;b=\dfrac{1}{2}\)
TH1: Với b=2 thay vào (!)=>a=3
=> x+y=3 và xy=2 => x=2;y=1.
TH2: Với b=1/2 thay vào (!)=> a=3/2
=> x+y=3/2 và xy=1/2 => x=1 và y=1/2.
Vậy \(\left(x;y\right)=\left\{\left(2;1\right);\left(1;\dfrac{1}{2}\right)\right\}\)
a)
\(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)
Đặt x+y = S, xy = P,ta có hệ
\(\left\{{}\begin{matrix}S+P=17\\S^2-P=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P=S-17\\S^2-S+4=0\end{matrix}\right.\)
\(S^2-S+4>0\)
=> Hệ phương trình vô nghiệm
HPT đã cho
\(\left\{{}\begin{matrix}\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=\dfrac{2}{3}\\\dfrac{x^2+1}{x}+\dfrac{y^2+1}{y}=6\end{matrix}\right.\)
Đặt \(\dfrac{x}{x^2+1}=u;\dfrac{y}{y^2+1}=v\)
HPT tương đương
\(\left\{{}\begin{matrix}u+v=\dfrac{2}{3}\\\dfrac{1}{u}+\dfrac{1}{v}=6\end{matrix}\right.\)
Tới đây thì dễ rồi u=1/3;v=1/3
Xong tìm được x,y
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\)
\(\Leftrightarrow x^4-5x^2=4=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}\right)^2-\left(y+\dfrac{1}{y}\right)^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)\left(x+\dfrac{1}{x}-y-\dfrac{1}{y}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\x+\dfrac{1}{x}-y-\dfrac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=5\\y+\dfrac{1}{y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+1=0\\y^2-2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\left(x\ne0\right)\left(1\right)\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(2\right)\end{matrix}\right.\)
* giải pt(2)\(=>\dfrac{1100x+5500-1100x}{x^2+5x}=2\)
\(=>5500=2x^2+10x=>2x^2+10x-5500=0\)
\(=>\Delta=10^2-4\left(-5500\right)2=44100>0\)
\(=>\left[{}\begin{matrix}x1=\dfrac{-10+\sqrt{44100}}{2.2}=50\left(TM\right)\left(3\right)\\x2=\dfrac{-10-\sqrt{44100}}{2.2}=-55\left(TM\right)\left(4\right)\end{matrix}\right.\)
thế(3)(4) vào(1)\(=>\left[{}\begin{matrix}y=\dfrac{1100}{50}=22\\y=\dfrac{1100}{-55}=-20\end{matrix}\right.\)
vậy...