K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

Pt <=>  \(\dfrac{1}{x}-\dfrac{1}{x+5}=\dfrac{1}{550}\)

<=>  \(\dfrac{\left(x+5\right)-x}{x\left(x+5\right)}=\dfrac{1}{550}\)

<=> \(\dfrac{5}{x\left(x+5\right)}=\dfrac{1}{550}\)

<=> \(x^2+5x=2750\)

<=> \(x^2+5x-2750=0\)

<=> \(\left(x^2+5x+2,5^2\right)-52,5^2=0\) (bước này hơi tắt xíu nha :<)

<=> \(\left(x+2,5\right)^2-52,5^2=0\)

<=> \(\left(x+55\right)\left(x-50\right)=0\)

<=> \(\left[{}\begin{matrix}x+55=0\\x-50=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-55\\x=50\end{matrix}\right.\)

Vậy nghiệm của phương trình là x \(\in\left\{-55;50\right\}\)

21 tháng 6 2021

\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)

\(\dfrac{1100\left(x+5\right)-1100x}{x\left(x+5\right)}=\dfrac{2x\left(x+5\right)}{x\left(x+5\right)}\)

\(1100x+5500-1100x=2x^2+10x\)

\(2x^2+10x-5500=0\)

Δ' \(=5^2-2\left(-5500\right)\)

Δ'\(=11025\)

\(\left[{}\begin{matrix}x=50\\x=-55\end{matrix}\right.\)

21 tháng 6 2021

\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\left(x\ne0\right)\left(1\right)\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(2\right)\end{matrix}\right.\)

* giải pt(2)\(=>\dfrac{1100x+5500-1100x}{x^2+5x}=2\)

\(=>5500=2x^2+10x=>2x^2+10x-5500=0\)

\(=>\Delta=10^2-4\left(-5500\right)2=44100>0\)

\(=>\left[{}\begin{matrix}x1=\dfrac{-10+\sqrt{44100}}{2.2}=50\left(TM\right)\left(3\right)\\x2=\dfrac{-10-\sqrt{44100}}{2.2}=-55\left(TM\right)\left(4\right)\end{matrix}\right.\)

thế(3)(4) vào(1)\(=>\left[{}\begin{matrix}y=\dfrac{1100}{50}=22\\y=\dfrac{1100}{-55}=-20\end{matrix}\right.\)

vậy...

10 tháng 3 2022

đk : x khác 0 ; -5 

\(1100x+5500-1100x=2x\left(x+5\right)\)

\(\Leftrightarrow2x^2+10x-5500=0\Leftrightarrow x=50;x=-55\)(tm) 

10 tháng 3 2022

= - 55 tm

NV
9 tháng 8 2021

ĐKXĐ: ...

\(\dfrac{5}{x^2}+1+\dfrac{2x}{\sqrt{5+x^2}}=3\)

\(\Leftrightarrow\dfrac{5+x^2}{x^2}+\dfrac{2x}{\sqrt{5+x^2}}=3\)

Đặt \(\dfrac{x}{\sqrt{5+x^2}}=t\)

\(\Rightarrow\dfrac{1}{t^2}+2t=3\)

\(\Rightarrow2t^3-3t^2+1=0\)

\(\Rightarrow\left(t-1\right)^2\left(2t+1\right)=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{5+x^2}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{5+x^2}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x^2}{5+x^2}=1\left(vn\right)\\\dfrac{x^2}{5+x^2}=\dfrac{1}{4}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow x=-\sqrt{\dfrac{5}{3}}\)

17 tháng 6 2021

`1/x+1/(x+2)=5/12`

ĐK:`x ne 0,x ne -2`

`<=>(x+2+x)/(x^2+2x)=5/12`

`<=>(2x+2)/(x^2+2x)=5/12`

`<=>24x+24=5x^2+10x`

`<=>5x^2-14x-24=0`

Ta có:`Delta'=49+24.5`

`=49+120=169`

`=>x_1=-6/5,x_2=4`

Vậy `S={4,-6/5}`

$ĐKXĐ : x \neq 0, x \neq -2$

Ta có : $\dfrac{1}{x} + \dfrac{1}{x+2} = \dfrac{5}{12}$

$\to \dfrac{2x+2}{x.(x+2)} = \dfrac{5}{12}$

$\to (2x+2).12 = x.(x+2).5$

$\to 24x + 24 = 5x^2 + 10x$

$\to 5x^2 - 14x - 24 = 0 $

$\to (x-4).(5x+6) = 0 $

S\to$ \(\left[{}\begin{matrix}x=4\\x=-\dfrac{6}{5}\end{matrix}\right.\)  ( thỏa mãn ĐKXĐ )

Vậy :....

ĐKXĐ: x<>0; y<>0

\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{3}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{3}{y}=1\\\dfrac{6}{x}+\dfrac{3}{y}=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{x}=4\\\dfrac{2}{x}+\dfrac{1}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\\dfrac{1}{y}=-1-\dfrac{2}{x}=-1-2:\dfrac{-1}{4}=-1+8=7\end{matrix}\right.\)

=>x=-1/4 và y=1/7

D
datcoder
CTVVIP
7 tháng 10 2023

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\end{matrix}\right.\) 

Hệ phương trình trở thành \(\left\{{}\begin{matrix}5a+3b=1\\2a+b=-1\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}b=-1-2a\\5a+3\left(-1-2a\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-1-2a\\-a-3=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a=-4\\b=-1-2.\left(-4\right)\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-4\\b=7\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}a=\dfrac{1}{x}=-4\\b=\dfrac{1}{y}=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\left(tm\right)\\y=\dfrac{1}{7}\left(tm\right)\end{matrix}\right.\)

Vậy HPT có nghiệm \(x=-\dfrac{1}{4}\) và \(y=\dfrac{1}{7}\)

a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)

\(\Leftrightarrow x^2+3x-12-10x-30=0\)

\(\Leftrightarrow x^2-7x-42=0\)

\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)

b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};1\right\}\)

NV
29 tháng 1

a.

ĐKXĐ: \(x\ne\pm y\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\2u+3v=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3u+3v=6\\2u+3v=5\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=2-u\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=1\\\dfrac{1}{x-y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+7=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-5x+6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

19 tháng 1 2023

\(\left\{{}\begin{matrix}y-\dfrac{2}{5}=\dfrac{x}{50}\\y+1=\dfrac{x}{40}\end{matrix}\right.\)

`=> y -2/5 -y-1 = x/50 -x/40`

`<=> -7/5 = x(1/50-1/40)`

`=> x= -7/5 : (1/50 -1/40) `

`<=> x =280`

`=> y +1 =280/40 = 7`

`<=> y = 6`

Vậy.....