Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng d qua M ( 2;-4;1 ) và có vectơ chỉ phương là u → 2 ; 3 ; 2
Đường thẳng d’ qua M' ( 0;1;-1 ) và có vectơ chỉ phương là u ' → = 4 ; 6 ; 4
Do u → và u ' → cùng phương đồng thời M ∉ d ' nên hai đường thẳng đó song song nhau.
Đáp án A
Đáp án A.
Ta có: u d . n p = - 2 - 2 + 4 = 0 nên [ d / / ( P ) d ⊂ P
Mặt khác điểm A(1;0;3) và A(1;0;3) ∈ P nên d nằm trên (P).
Đáp án C
Hình có 2 trục đối xứng, đó là các đường thẳng a, d’, a và b
Trong đó a và b là các đường phân giác của các góc tạo bởi 2 đường thẳng d và d’
Chọn D
TH1:
Ta có Đ O : M x ; y → M ' ( x ' ; y ' ) . Khi đó: x ' = − x y ' = − y ⇔ x = − x ' y = − y '
Từ x + y − 2 = 0 ⇔ − x ' − y ' − 2 = 0
Vậy có ảnh d 1 : x + y + 2 = 0 .
Tiếp tục qua phép tịnh tiến v → = 3,2 có T v → : N x ; y → N ' x ' ; y ' khi đó x ' = x + 3 y ' = y + 2 ⇔ x = 3 − x ' y = 2 − y ' .
x + y + 2 = 0 ⇔ 3 − x ' + 2 − y ' + 2 = 0 ⇔ 7 − x ' − y ' = 0
Vậy ảnh là d ' : x + y − 7 = 0 .
TH2:
Ta có qua phép tịnh tiến v → = 3,2 có T v → : N x ; y → N ' x ' ; y ' khi đó x ' = x + 3 y ' = y + 2 ⇔ x = 3 − x ' y = 2 − y ' . Từ x + y − 2 = 0 ⇔ 3 − x ' + 2 − y ' − 2 = 0 ⇔ 3 − x ' − y ' = 0
Vậy có ảnh d 1 : x + y − 3 = 0 .
Tiếp tục Đ O : M x ; y → M ' ( x ' ; y ' ) . Khi đó: x ' = − x y ' = − y ⇔ x = − x ' y = − y '
Từ x + y − 3 = 0 ⇔ − x ' − y ' − 3 = 0
Vậy ảnh là d ' : x + y + 3 = 0 .
Đáp án C
Ta có ∆ : x = a + 5 t ' y = 1 - 12 t ' t ' ∈ ℝ z = - 5 - t ' ⇒ giải hệ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇔ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇒ a = 8
Đáp án A
Gọi K là hình chiếu vuông góc của điểm A trên mặt phẳng (P).
Vậy điểm H luôn thuộc đường tròn đường kính BK cố định. Bán kính của đường tròn đó là:
a) Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).
Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).
Ta có = (19 ; 2 ; -11) ; = (8 ; 1 ; 14)
và = (19.8 + 2 - 11.4) = 0
nên d và d' cắt nhau.
Nhận xét : Ta nhận thấy , không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.
Xét hệ phương trình:
Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó d và d' cắt nhau.
b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d và (2 ; 2 ; -2) là vectơ chỉ phương của d' .
Ta thấy và cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.
Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M d' nên d và d' song song.