Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
Đáp án A
Gọi M là trung điểm của BC, ∆ S B C đều ⇒ S M ⊥ B C
Mà S A ⊥ ( A B C ) ⇒ S A ⊥ B C và S M ⊥ B C suy ra B C ⊥ ( S A M )
Ta có:
Xét tam giác SAM vuông tại A có:
⇒ S A B C = 1 2 A M . B C = 3 a 2 8
⇒ V S . A B C = 1 3 S A . S A B C = a 3 3 32
Ta có : \(SA\perp BC\), \(AB\perp BC\) \(\Rightarrow SB\perp BC\)
Do đó : góc giữa 2 mặt phẳng (SBC) và (ABC) bằng \(\widehat{SBA}=30^0\)
\(V_{S.ABM}=\frac{1}{2}V_{S.ABC}=\frac{1}{2}SA.AB.BC\)
\(BC=AB=a;SA=AB.\tan30^0=\frac{a\sqrt{3}}{3}\)
Vậy \(V_{s.ABM}=\frac{a^3\sqrt{3}}{36}\)
Đáp án B