K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 1

Cộng vế với vế:

\(\Rightarrow x+y+z=2ax+2by+2cz\)

\(\Rightarrow x+y+z-2x=2ax+2by+2cx-2\left(by+cz\right)=2ax\)

\(\Rightarrow2ax=y+z-x\)

\(\Rightarrow a=\dfrac{y+z-x}{2x}\Rightarrow1+a=\dfrac{x+y+z}{2x}\)

Tương tự ta có: \(1+b=\dfrac{x+y+z}{2y}\) ; \(1+c=\dfrac{x+y+z}{2z}\)

\(\Rightarrow\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=\dfrac{2x+2y+2z}{x+y+z}=2\)

 

AH
Akai Haruma
Giáo viên
12 tháng 4 2018

Lời giải:

Ta có:

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x-y=by-ax\\ z=ax+by\end{matrix}\right.\)

\(\Rightarrow x-y+z=2by\Rightarrow b=\frac{x+z-y}{2y}\)

Hoàn toàn tương tự ta nhận được:

\(a=\frac{y+z-x}{2x};c=\frac{x+y-z}{2z}\)

Suy ra:

\(\left\{\begin{matrix} a+1=\frac{x+y+z}{2x}\\ b+1=\frac{x+y+z}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\) (ĐPCM)

16 tháng 12 2018

Ta có:\(\left\{{}\begin{matrix}x=by+cz\\y=ax+cz\\z=ax+by\end{matrix}\right.\)

\(\Leftrightarrow x+y+z=2\left(ax+by+cz\right)\)

Thay \(x=by+cz\) vào biểu thức ta được:

\(x+y+z=2\left(ax+x\right)=2x\left(a+1\right)\)

\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{2x}{2x\left(1+a\right)}=\dfrac{2x}{x+y+z}\)

CMTT và cộng theo vế suy ra A=2

NV
20 tháng 2 2019

\(2a+2b+2c=2ax+2by+2cz\Rightarrow a+b+c=ax+by+cz\)

\(\Rightarrow a+b+c=ax+2a\Rightarrow a+b+c=a\left(x+2\right)\)

Tương tự ta có \(\left\{{}\begin{matrix}a+b+c=b\left(y+2\right)\\a+b+c=c\left(z+2\right)\end{matrix}\right.\)

Để M xác định thì \(x+2;y+2;z+2\ne0\)

Do đó nếu \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\) \(\Rightarrow\) đúng với mọi x, y, z

\(\Rightarrow\) giá trị M không xác định

Nếu \(a+b+c\ne0\Rightarrow\left\{{}\begin{matrix}x+2=\dfrac{a+b+c}{a}\\y+2=\dfrac{a+b+c}{b}\\z+2=\dfrac{a+b+c}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+2}=\dfrac{a}{a+b+c}\\\dfrac{1}{y+2}=\dfrac{b}{a+b+c}\\\dfrac{1}{z+2}=\dfrac{c}{a+b+c}\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

NV
20 tháng 2 2019

Dòng 5 gõ nhầm \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\\c=0\end{matrix}\right.\) mới đúng