Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=-4\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\)
(P) có đỉnh I(1;1) và đi qua A(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=1\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\4a+2b+c=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-2a\\4a+2\cdot\left(-2a\right)+c=3\\b^2-4ac=-4a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=3\\b=-2a\\4a^2-12a+4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\4a^2-8a=0\\b=-2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=3\\4a\left(a-2\right)=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\\left[{}\begin{matrix}a=0\left(loại\right)\\a=2\left(nhận\right)\end{matrix}\right.\\b=-2\cdot2=-4\end{matrix}\right.\)
=>c=3;a=2;b=-4
=>\(S=3^2+2^2+\left(-4\right)^2=25+4=29\)
=>Chọn C
a, Đths đi qua \(A\left(-1;-3\right)\Leftrightarrow-3=-a+b\left(1\right)\)
Đths đi qua \(B\left(2;3\right)\Leftrightarrow3=2a+b\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Vậy đths là \(y=2a-1\)
b, Đths đi qua \(M\left(-3;4\right)\Leftrightarrow4=-3a+b\left(1\right)\)
Đths song song với Ox \(\Leftrightarrow y=b=4\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow a=0\)
Vậy đths là \(y=4\)
A(1; 2) thuộc đồ thị hàm số y = ax + b ⇒ 2 = a.1 + b ⇒ b = 2 – a (1)
B (2; 1) thuộc đồ thị hàm số y = ax + b ⇒ 1 = 2.a + b (2)
Thay (1) vào (2) ta được: 2a + 2 – a = 1 ⇒ a = –1 ⇒ b = 2 – a = 3.
Vậy a = –1; b = 3.
A(15; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 15.a + b ⇒ b = –3 – 15.a (1)
B (21; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 21.a + b ⇒ b = –3 – 21.a (2)
Từ (1) và (2) suy ra –3 – 15.a = –3 – 21.a ⇒ a = 0 ⇒ b = –3.
Vậy a = 0; b = –3.
A(0;3) thuộc đồ thị hàm số y = ax + b ⇒ 3 = a.0 + b ⇒ b = 3.
B (3/5; 0) thuộc đồ thị hàm số y = ax + b ⇒ 0 = a.3/5 + 3 ⇒ a = –5.
Vậy a = –5; b = 3.
Đồ thị hàm số y = ax + b đi qua M(1;7) và N(0;3) nên tọa độ của M, N thỏa mãn phương trình .
Ta có a + b = 7 b = 3 ⇒ a = 4 b = 3 .
Vậy đáp án là B.
\(\left\{{}\begin{matrix}3a+b=0\\-2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=-3a=-3\cdot\dfrac{-4}{5}=\dfrac{12}{5}\end{matrix}\right.\)
Từ giả thiết ta có \(\left\{{}\begin{matrix}a+b=5\\-a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\Rightarrow y=2x+3\)