K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=-1\end{matrix}\right.\)

13 tháng 7 2017

a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)

\(=x^3+14x^2+27x+51\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)

\(=8x^3+18-8x^3+18=36\)

c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)

\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)

\(=64x^5-1\)

d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)

\(=x^3-x^2+14\)

Chúc bạn học tốt!!!

13 tháng 7 2017

Cảm ơn nha !!!

1 tháng 11 2021

1.a) 2x4-4x3+2x2

=2x2(x2-2x+1)

=2x2(x-1)2

b) 2x2-2xy+5x-5y

=2x(x-y)+5(x-y)

=(2x+5)(x-y)

2.

a) 4x(x-3)-x+3=0

=>4x(x-3)-(x-3)=0

=>(4x-1)(x-3)=0

=> 2 TH:

*4x-1=0            *x-3=0

=>4x=0+1        =>x=0+3

=>4x=1           =>x=3

=>x=1/4

vậy x=1/4 hoặc x=3

b) (2x-3)^2-(x+1)^2=0

=> (2x-3-x-1).(2x-3+x+1)=0

=>(x-4).(3x-2)=0

=> 2 TH

*x-4=0

=> x=0+4

=> x=4

*3x-2=0

=>3x=0-2

=>3x=-2

=>x=-2/3 

vậy x=4 hoặc x=-2/3

1 tháng 11 2021

sửa 1 chút phần cuối:

3x-2=0

=>3x=0+2

=>3x=2

=>x=2/3

vậy x=2/3 hoặc....

23 tháng 10 2016

-_- bài này hôm qua lm rùi

28 tháng 9 2018

\(x^2-2x=24\)

<=>  \(x^2-2x-24=0\)

<=>  \( \left(x+4\right)\left(x-6\right)=0\)

<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)

Vậy....

1 tháng 9 2019

\(a,\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)

\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)

\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)

\(\Leftrightarrow4\left(2+x\right)=0\)

\(\Leftrightarrow2+x=0\)

\(\Leftrightarrow x=-2\)

\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)

\(\Leftrightarrow2x+255=0\)

\(\Leftrightarrow x=-127,5\)

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

i)

$I=x^4+4x^3-x^2-14x+6$

$=(x^4+4x^4+4x^2)-5x^2-14x+6$

$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$

$=(x^2+2x-3)^2+(x^2-2x+1)-4$

$=(x-1)^2(x+3)^2+(x-1)^2-4$

$=(x-1)^2[(x+3)^2+1]-4\geq -4$

Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$

k)

$K=x^4+2x^3-10x^2-16x+45$

$=(x^4+2x^3+x^2)-11x^2-16x+45$

$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$

$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$

$=(x^2+x-6)^2+(x-2)^2+5$

$=[(x-2)(x+3)]^2+(x-2)^2+5$

$=(x-2)^2[(x+3)^2+1]+5\geq 5$

Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

g)

$G=x^4+4x^3+10x^2+12x+11$

$=(x^4+4x^3+4x^2)+6x^2+12x+11$

$=(x^2+2x)^2+6(x^2+2x)+11$

Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$

$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$

Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$

h)

$H=x^4-6x^3+x^2+24x+18$

$=(x^4-6x^3+9x^2)-8x^2+24x+18$

$=(x^2-3x)^2-8(x^2-3x)+18$

$=(x^2-3x)^2-8(x^2-3x)+16+2$

$=(x^2-3x-4)^2+2\geq 2$

Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$

30 tháng 11 2017

\(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)

\(=\left(2x-5\right)\left(2x+5\right)+\left(2x+7\right)\left(5-2x\right)\)

\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-7\right)\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x+5-2x+7\right)\)

\(=\left(2x-5\right).12\)

Những câu khác làm tương tự

21 tháng 7 2019

\(A=x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge0+\frac{7}{4}=\frac{7}{4}.\) Dâu bàng xay ra khi: \(x=\frac{-1}{2}\)

\(B=4x^2-4x-1=\left(4x^2-4x+1\right)-2=\left(2x-1\right)^2-2\ge0-2=-2\Rightarrow B_{min}=-2\) Dâu bàng xay ra: \(x=\frac{1}{2}\)

\(C=x^2+y^2+2x-4y+2=x^2+y^2+2x-4y+5-3=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)-3=\left(x+1\right)^2+\left(y-2\right)^2-3\ge0+0-3=-3\) Dâu bàng xay ra\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

21 tháng 7 2019

\(A=1-x^2+2x-1=1-\left(x-1\right)^2\le1-0=1\Rightarrow A_{max}=1.\text{Dâu "=" xay ra}\Leftrightarrow x=1\) \(B=-\left(x^2-4x-4\right)-3=-\left(x-2\right)^2-3\le0-3=-3\Rightarrow B_{max}=-3.\text{Dâu "=" xay ra}\Leftrightarrow x=2\)